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Deep Network Designer: Create networks for computer vision
and text applications

Use Deep Network Designer to create networks for computer vision and text
applications. Deep Network Designer now supports deep learning layers in Computer
Vision Toolbox™ and Text Analytics Toolbox™ for applications such as semantic
segmentation, object detection, and text classification. For a list of layers, see “List of
Deep Learning Layers”.

Deep Network Designer: Generate MATLAB code that
recreates your network

Generate MATLAB® code that recreates a network constructed in Deep Network Designer
and returns it as a LlayerGraph object or a Layer array in the MATLAB workspace. Use
the generated code to modify the network using the command line and automate deep
learning workflows. You can also save any pretrained weights and use the generated code
to recreate the network including weights.

For more information, see “Generate MATLAB Code from Deep Network Designer”.

Convolutions for Image Sequences: Create LSTM networks for
video classification and gesture recognition

Create deep learning networks for data containing sequences of images such as video
data and medical images.

» To input sequences of images into a network, use sequenceInputLayer.

* To apply convolutional operations independently on each time step, first convert the
sequences of images to an array of images using a sequenceFoldingLayer.

* To restore the sequence structure after applying these operations, use a
sequenceUnfoldinglLayer.

* To convert the output to an array of feature vectors, use a flattenLayer. After the
flatten layer, you can use LSTM and BiLSTM layers.

For an example, see “Classify Videos Using Deep Learning”.



Layer Initialization: Initialize layer weights and biases using
initializers or a custom function

Initialize layer weights and biases using initializers such as the Glorot initializer (also
known as the Xavier initializer), the He initializer, and orthogonal initializers. To specify
the initializer for the weights and biases of convolutional layers or fully connected layers,
use the 'WeightsInitializer' and 'BiasInitializer' name-value pairs of the
layers, respectively. To specify the initializer for the input weights, the recurrent weights,
and the biases for LSTM and BiLSTM layers, use the 'InputWeightsInitializer',
'RecurrentWeightsInitializer', and 'BiasInitializer' name-value pairs,
respectively.

You can specify initializers for these layers:

* batchNormalizationLayer

* bilstmLayer

* convolution2dLayer

* convolution3dLayer

+ fullyConnectedLayer

* groupedConvolution2dLayer

* lstmLayer

* transposedConv2dLayer

* transposedConv3dLayer

* wordEmbeddinglLayer (Text Analytics Toolbox)

For an example showing how to compare the different initializers, see “Compare Layer
Weight Initializers”. For an example showing how to create a custom initialization
function, see “Specify Custom Weight Initialization Function”.

Grouped Convolutions: Create efficient deep learning
networks with grouped and channel-wise convolutions

When training convolutional neural networks from scratch, for some networks, you can
speed up training and prediction by replacing standard convolutions with grouped or
channel-wise (also known as depth-wise) convolutions. To create a grouped convolutional
layer, use groupedConvolution2dLayer. For channel-wise convolution, use
groupedConvolution2dLayer and set NumGroups to 'channel-wise"'.
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For an example showing how to create a block of layers for channel-wise separable
convolution (also known as depth-wise separable convolution), see “Create Layers for
Channel-Wise Separable Convolution”.

3-D Support: New layers enable deep learning with 3-D data

These new layers enable you to work with 3-D data:

* 1image3dInputlLayer

* convolution3dLayer

* transposedConv3dLayer
* averagePooling3dLayer
* maxPooling3dLayer

* concatenationLayer

These existing layers are enhanced to support 3-D data in deep learning networks:

* relulLayer

* leakyRelulLayer

* clippedRelulLayer

+ fullyConnectedLayer
* softmaxLayer
 classificationLayer
* regressionLayer

For a list of available layers, see “List of Deep Learning Layers”. For an example showing
how to train a network using 3-D data, see “3-D Brain Tumor Segmentation Using Deep
Learning”.

Custom Layers: Create custom layers with multiple inputs or
multiple outputs

You can now define custom layers with multiple inputs or multiple outputs. If Deep
Learning Toolbox does not provide the deep learning layer you need for your task, then
you can define your own layer by specifying the layer forward and backward functions.



For more information about defining custom layers, see “Define Custom Deep Learning
Layers”. To learn how to check that the layer is valid automatically using the
checkLayer function, see “Check Custom Layer Validity”.

Deep Learning Acceleration: Optimize deep learning
applications using MEX functions

Accelerate prediction, classification, and feature extraction using automatically generated
MEX functions. Use the 'Acceleration’', 'mex' name-value pair with the following
functions.

* activations
* classify
* predict

Pretrained Networks: Perform transfer learning with
MobileNet-v2, Xception, and Places365-GooglLeNet pretrained
convolutional neural networks

You can now install add-ons for the MobileNet-v2, Xception, and Places365-GoogLeNet
pretrained convolutional neural networks. To download and install the pretrained
networks, use the Add-On Explorer. You can also download the networks from MathWorks
Deep Learning Toolbox Team. After you install the add-ons, use the mobilenetv2,
xception, and googlenet functions to load the networks, respectively. Places365-
GoogLeNet is a version of GoogLeNet that is trained on the Places365 data set and
classifies images into 365 different place categories, such as field, park, runway, and
lobby. To load this network, use net = googlenet('Weights', 'places365').

To retrain a network on a new classification task, follow the steps in “Train Deep Learning
Network to Classify New Images” and load the pretrained network you want to use
instead of GoogLeNet.

For more information on pretrained neural networks in MATLAB, see “Pretrained Deep
Neural Networks”.
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Deep Learning Layers: Hyperbolic tangent and exponential
linear unit activation layers

You can now use hyperbolic tangent (tanh) and exponential linear unit (ELU) layers as
activation layers in deep learning networks. To create a tanh or ELU layer, use
tanhLayer and elulLayer, respectively.

For a list of available layers, see List of Deep Learning Layers.

Deep Learning Visualization: Investigate network predictions
using class activation mapping

Follow the example “Investigate Network Predictions Using Class Activation Mapping”
and use the class activation mapping (CAM) technique to investigate and explain the
predictions of a deep convolutional neural network for image classification.

Deep Learning Examples: Explore deep learning workflows

New examples and topics help you progress with deep learning:

* “Investigate Network Predictions Using Class Activation Mapping”
» “Classify Videos Using Deep Learning”

* “Run Multiple Deep Learning Experiments”

* “Train Network Using Out-of-Memory Sequence Data”

* “Compare Layer Weight Initializers”

» “Specify Custom Weight Initialization Function”

New examples for computer vision problems include:

* “Object Detection Using YOLO v2 Deep Learning”
* “3-D Brain Tumor Segmentation Using Deep Learning”

New examples for text problems include:

» “Classify Text Data Using Convolutional Neural Network”
* “Classify Out-of-Memory Text Data Using Deep Learning”

New examples for signal and audio processing include:
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* “Cocktail Party Source Separation Using Deep Learning Networks”

* “Voice Activity Detection in Noise Using Deep Learning”

* “Modulation Classification with Deep Learning”

* “Spoken Digit Recognition with Wavelet Scattering and Deep Learning”
* “Waveform Segmentation Using Deep Learning”

New code generation examples include:

* “Code Generation for Semantic Segmentation Network using U-net”

* “Train and Deploy Fully Convolutional Networks for Semantic Segmentation’
* “Code Generation for Object Detection Using YOLO v2”

* “Code Generation for Deep Learning on ARM Targets”

* “Code Generation for Deep Learning on Raspberry Pi”

* “Deep Learning Prediction with ARM Compute Using cnncodegen”

J

Functionality being removed or changed

Glorot is default weights initialization for convolution, transposed convolution,
and fully connected layers
Behavior change

Starting in R2019a, the software, by default, initializes the layer weights of
convolution2dLayer, transposedConv2dLayer, and fullyConnectedLayer using
the Glorot initializer. This behavior helps stabilize training and usually reduces the
training time of deep networks.

In previous releases, the software, by default, initializes the layer weights by sampling
from a normal distribution with a mean of zero and a variance of 0.01. To reproduce this
behavior, set the 'WeightsInitializer' option of these layers to 'narrow-normal'.

Glorot is default input weights initialization for LSTM and BiLSTM layers
Behavior change

Starting in R2019a, the software, by default, initializes the layer input weights of
lstmLayer and bilstmLayer using the Glorot initializer. This behavior helps stabilize
training and usually reduces the training time of deep networks.

In previous releases, the software, by default, initializes the layer input weights by
sampling from a normal distribution a mean of zero and a variance of 0.01. To reproduce
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this behavior, set the 'InputWeightsInitializer' option of these layers to 'narrow-
normal'.

Orthogonal is default recurrent weights initialization for LSTM and BiLSTM layers
Behavior change

Starting in R2019a, the software, by default, initializes the layer recurrent weights of
LSTM and BiLSTM layers with Q, the orthogonal matrix given by the QR decomposition of
Z = QR for a random matrix Z sampled from a unit normal distribution. This behavior
helps stabilize training and usually reduces the training time of deep networks.

In previous releases, the software, by default, initializes the layer recurrent weights by
sampling from a normal distribution with a mean of zero and a variance of 0.01. To
reproduce this behavior, set the 'RecurrentWeightsInitializer' option of the layer
to 'narrow-normal".

Custom layers have new properties Numinputs, InputNames, NumOutputs, and
OutputNames

Starting in R2019a, custom layers have the new properties NumInputs, InputNames,
NumOutputs, and OutputNames. These properties enable support for custom layers with
multiple inputs and multiple outputs.

If you use a custom layer created in R2018b or earlier, the layer cannot have any
properties named NumInputs, InputNames, NumQutputs, or OutputNames. You must
rename these properties to use the layer in R2019a and onwards.

Cropping property of TransposedConvolution2DLayer will be removed
Still runs

Cropping property of TransposedConvolution2DLayer will be removed. Use
CroppingSize instead. To update your code, replace all instances of the Cropping
property with CroppingSize.

matlab.io.datastore.MiniBatchable is not recommended for custom image
preprocessing
Still runs

Before R2018a, to perform custom image preprocessing for training deep learning
networks, you had to specify a custom read function using the readFcn property of



imageDatastore. However, reading files using a custom read function was slow because
imageDatastore did not prefetch files.

In R2018a, the four classes matlab.io.datastore.MiniBatchab'le,
matlab.io.datastore.BackgroundDispatchable,
matlab.io.datastore.Shuffleable, and
matlab.io.datastore.PartitionableByIndex were introduced as a solution to
perform custom image preprocessing with support for prefetching, shuffling, and parallel
training. Implementing a custom mini-batch datastore using these classes has several
challenges and limitations.

» In addition to specifying the preprocessing operations, you must also define properties
and methods to support reading data in batches, reading data by index, and
partitioning and shuffling data.

* You must specify a value for the NumObservations property, but this value may be ill-
defined or difficult to define in real-world applications.

* Custom mini-batch datastores are not flexible enough to support common deep
learning workflows, such as deployed workflows using GPU Coder™.

Starting in R2019a, built-in datastores natively support prefetch, shuffling, and parallel
training when reading batches of data. The transform function is the preferred way to
perform custom image preprocessing using built-in datastores. The combine function is
the preferred way to concatenate read data from multiple datastores, including
transformed datastores. Concatenated data can serve as the network inputs and expected
responses for training deep learning networks. The transform and combine functions
have several advantages over custom mini-batch datastores.

» The functions enable data preprocessing and concatenation for all types of datastores,
including imageDatastore.
* The transform function requires you to define only the data processing pipeline.

* When used on a deterministic datastore, the functions support tall data types and
MapReduce.

* The functions support deployed workflows.

For more information about custom image preprocessing, see “Preprocess Images for
Deep Learning”.

matlab.io.datastore.BackgroundDispatchable and
matlab.io.datastore.PartitionableByIndex are not recommended
Still runs
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matlab.io.datastore.BackgroundDispatchable and
matlab.io.datastore.PartitionableByIndex add support for prefetching and
parallel training to custom mini-batch datastores. You can use custom mini-batch
datastores to preprocess sequence, time series, or text data, but recurrent networks such
as LSTM networks do not support prefetching or parallel and multi-GPU training.

Starting in R2019a, built-in datastores natively support prefetching and parallel training,
so custom mini-batch datastores are not recommended for custom image preprocessing.

There are no plans to remove matlab.io.datastore.BackgroundDispatchable or
matlab.io.datastore.PartitionableByIndex at this time.



R2018b

Version: 12.0
New Features
Bug Fixes

Compatibility Considerations



R2018b

2-2

Renamed Product: Neural Network Toolbox renamed to Deep
Learning Toolbox

Neural Network Toolbox™ now has the name Deep Learning Toolbox.

Deep Network Designer: Edit and build deep learning
networks

Build, visualize, and edit deep learning networks interactively in the Deep Network
Designer app.

Import pretrained networks and edit them for transfer learning.
Edit networks and build new networks from scratch.

Drag and drop to add new layers and create new connections.
View and edit layer properties.

Analyze the network to check for correct architecture and detect problems before
training.

Export the network to the workspace, where you can save or train the network.


https://www.mathworks.com/help/releases/R2018b/deeplearning/ref/deepnetworkdesigner-app.html
https://www.mathworks.com/help/releases/R2018b/deeplearning/ref/deepnetworkdesigner-app.html
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For examples, see:

* Transfer Learning with Deep Network Designer
* Build Networks with Deep Network Designer
* Interactive Transfer Learning Using AlexNet

ONNX Support: Import and export models using the ONNX

model format for interoperability with other deep learning
frameworks

Export a trained MATLAB deep learning network to the ONNX™ (Open Neural Network
Exchange) model format using the exportONNXNetwork function. You can then import

the ONNX model to other deep learning frameworks, such as TensorFlow™, that support
ONNX model import.
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https://www.mathworks.com/help/releases/R2018b/deeplearning/ug/build-networks-with-deep-network-designer.html
https://www.mathworks.com/help/releases/R2018b/deeplearning/ref/alexnet.html#mw_0bb92610-c524-4869-bd60-f9c93b2d2543
https://www.mathworks.com/help/releases/R2018b/deeplearning/ref/exportonnxnetwork.html
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Import deep learning networks and network architectures from ONNX using
importONNXNetwork and importONNXLayers.

Network Analyzer: Visualize, analyze, and find problems in
network architectures before training

Analyze deep learning network architectures using the analyzeNetwork function. Use
the network analyzer to visualize and understand the network architecture, check that
you have defined the architecture correctly, and detect problems before training.
Problems that analyzeNetwork detects include missing or disconnected layers,
incorrectly sized layer inputs, an incorrect number of layer inputs, and invalid graph
structures. For more information, see analyzeNetwork.

LSTM Network Validation: Validate networks for time series
data automatically during training

Validate LSTM networks at regular intervals during network training, and automatically
stop training when validation metrics stop improving.

To perform network validation during training, specify validation data using the
'ValidationData' name-value pair argument of trainingOptions. You can change
the validation frequency using the 'ValidationFrequency' name-value pair argument.
For more information, see Specify Validation Data.

For an example showing how to specify validation data for an LSTM network, see Classify
Text Data Using Deep Learning.

Network Assembly: Assemble networks from imported layers
and weights without training

Assemble networks from imported layers and weights without training using the
assembleNetwork function. You can use this function for the following tasks:

* Convert a layer array or layer graph to a network ready for prediction.

* Assemble networks from imported layers.

* Modify the weights of a trained network.


https://www.mathworks.com/help/releases/R2018b/deeplearning/ref/importonnxnetwork.html
https://www.mathworks.com/help/releases/R2018b/deeplearning/ref/importonnxlayers.html
https://www.mathworks.com/help/releases/R2018b/deeplearning/ref/analyzenetwork.html
https://www.mathworks.com/help/releases/R2018b/deeplearning/ref/analyzenetwork.html
https://www.mathworks.com/help/releases/R2018b/deeplearning/ref/trainingoptions.html
https://www.mathworks.com/help/releases/R2018b/deeplearning/ug/setting-up-parameters-and-training-of-a-convnet.html#mw_cd5458bb-1f7c-4634-9a04-475b82896102
https://www.mathworks.com/help/releases/R2018b/deeplearning/examples/classify-text-data-using-deep-learning.html
https://www.mathworks.com/help/releases/R2018b/deeplearning/examples/classify-text-data-using-deep-learning.html
https://www.mathworks.com/help/releases/R2018b/deeplearning/ref/assemblenetwork.html

For an example showing how to assemble a network from pretrained layers, see Assemble
Network from Pretrained Keras Layers.

Output Layer Validation: Verify custom output layers for
validity, GPU compatibility, and correctly defined gradients

Check custom output layers for validity using checkLayer. You can check GPU
compatibility and correctly defined gradients. For more information, see Check Custom
Layer Validity.

Visualization: Investigate network predictions using confusion
matrix charts

Use confusionchart to calculate and plot a confusion matrix for a classification
problem using true and predicted labels. A confusion matrix helps you evaluate how well
the classifier performs on a data set and identify where it is accurate or inaccurate.
Additionally, you can:

* Create a confusion matrix chart from a nonnegative integer-valued confusion matrix.

» Control the appearance and behavior of the confusion matrix chart by modifying
ConfusionMatrixChart Properties.

* View summary statistics about your data, such as the number of correctly and
incorrectly classified observations for each predicted and true class.

* Sort the classes of the confusion matrix by the total number of correctly classified
observations, the class-wise precision (positive predictive value), or the class-wise
recall (true positive rate) by using sortClasses.

Dilated Convolution: Change the dilation factor of
convolutional layers to enhance prediction accuracy for tasks
such as semantic segmentation

Specify dilated convolutions (also known as atrous convolutions) using the
DilationFactor property of convolution2dLayer. Use dilated convolutions to
increase the receptive field (the area of the input that the layer can see) of the layer
without increasing the number of parameters or computation.
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https://www.mathworks.com/help/releases/R2018b/deeplearning/examples/assemble-network-from-pretrained-keras-layers.html
https://www.mathworks.com/help/releases/R2018b/deeplearning/ref/checklayer.html
https://www.mathworks.com/help/releases/R2018b/deeplearning/ug/check-layer-validity.html
https://www.mathworks.com/help/releases/R2018b/deeplearning/ug/check-layer-validity.html
https://www.mathworks.com/help/releases/R2018b/deeplearning/ref/confusionchart.html
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For an example showing how to use dilated convolutions for semantic segmentation, see
Semantic Segmentation Using Dilated Convolutions

Sequence Mini-Batch Datastores: Develop datastores for
sequence, time series, and signal data

Use custom mini-batch datastores for sequence, time series, and signal data when data is
too large to fit in memory, or to perform specific operations when reading batches of data.
You can optionally add support for functionalities such as shuffling during training,
parallel and multi-GPU training, and background dispatch. For more information, see
Develop Custom Mini-Batch Datastore.

For an example showing how to use a custom mini-batch datastore for sequence data, see
Train Network Using Out-of-Memory Sequence Data.

Pretrained Networks: Perform transfer learning with
ResNet-18 and DenseNet-201 pretrained convolutional neural
networks

You can now install add-ons for the ResNet-18 and DenseNet-201 pretrained
convolutional neural networks. To download and install the pretrained networks, use the
Add-On Explorer. You can also download the networks from MathWorks Deep Learning
Toolbox Team. After you install the add-ons, use the resnet18 and densenet201
functions to load the networks, respectively.

To retrain a network on a new classification task, follow the steps of Train Deep Learning
Network to Classify New Images and load ResNet-18 or DenseNet-201 instead of
GoogLeNet.

For more information on pretrained neural networks in MATLAB, see Pretrained
Convolutional Neural Networks.

TensorFlow-Keras: Import LSTM and BiLSTM layers from
TensorFlow-Keras

Import pretrained LSTM and BiLSTM networks and layers from TensorFlow-Keras by
using the importKerasNetwork and importKeraslLayers functions.


https://www.mathworks.com/help/releases/R2018b/deeplearning/examples/semantic-segmentation-using-dilated-convolutions.html
https://www.mathworks.com/help/releases/R2018b/deeplearning/ug/develop-custom-mini-batch-datastore.html
https://www.mathworks.com/help/releases/R2018b/deeplearning/examples/train-network-using-out-of-memory-sequence-data.html
https://www.mathworks.com/matlabcentral/profile/authors/8743315-mathworks-deep-learning-toolbox-team
https://www.mathworks.com/matlabcentral/profile/authors/8743315-mathworks-deep-learning-toolbox-team
https://www.mathworks.com/help/releases/R2018b/deeplearning/ref/resnet18.html
https://www.mathworks.com/help/releases/R2018b/deeplearning/ref/densenet201.html
https://www.mathworks.com/help/releases/R2018b/deeplearning/examples/train-deep-learning-network-to-classify-new-images.html
https://www.mathworks.com/help/releases/R2018b/deeplearning/examples/train-deep-learning-network-to-classify-new-images.html
https://www.mathworks.com/help/releases/R2018b/deeplearning/ug/pretrained-convolutional-neural-networks.html
https://www.mathworks.com/help/releases/R2018b/deeplearning/ug/pretrained-convolutional-neural-networks.html
https://www.mathworks.com/help/releases/R2018b/deeplearning/ref/importkerasnetwork.html
https://www.mathworks.com/help/releases/R2018b/deeplearning/ref/importkeraslayers.html

To use importKerasNetwork and importKerasLayers, you must install the Deep
Learning Toolbox Importer for TensorFlow-Keras Models support package. If this support
package is not installed, the functions provide a download link.

Caffe Importer: Import directed acyclic graph networks from
Caffe

Import directed acyclic graph (DAG) networks and network architectures from Caffe. In
previous releases, you could only import networks with layers arranged in a sequence. To
import a Caffe network with weights, use importCaffeNetwork. To import a network
architecture without weights, use importCaffelLayers.

LSTM Layer Activation Functions: Specify state and gate
activation functions

For LSTM layers, specify state and gate activation functions using the
StateActivationFunction and GateActivationFunction properties of LstmLayer
respectively. For BiLSTM layers, specify the state and gate activation functions using the
StateActivationFunction and GateActivationFunction properties of
bilstmLayer, respectively.

Deep Learning: New network layers

You can now use the following layers in deep learning networks:

* wordEmbeddinglLayer

* roilnputLayer

* roiMaxPooling2dLayer

* regionProposalLayer

* rpnSoftmaxLayer

* rpnClassificationLayer

* rcnnBoxRegressionlLayer

+ weightedClassificationLayer (custom layer example)
* dicePixelClassificationLayer (custom layer example)

For a list of available layers, see List of Deep Learning Layers.
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https://www.mathworks.com/help/releases/R2018b/deeplearning/ref/importcaffenetwork.html
https://www.mathworks.com/help/releases/R2018b/deeplearning/ref/importcaffelayers.html
https://www.mathworks.com/help/releases/R2018b/deeplearning/ref/nnet.cnn.layer.lstmlayer.html
https://www.mathworks.com/help/releases/R2018b/deeplearning/ref/nnet.cnn.layer.bilstmlayer.html
https://www.mathworks.com/help/releases/R2018b/textanalytics/ref/nnet.cnn.layer.wordembeddinglayer.html
https://www.mathworks.com/help/releases/R2018b/vision/ref/nnet.cnn.layer.roiinputlayer.html
https://www.mathworks.com/help/releases/R2018b/vision/ref/nnet.cnn.layer.roimaxpooling2dlayer.html
https://www.mathworks.com/help/releases/R2018b/vision/ref/nnet.cnn.layer.regionproposallayer.html
https://www.mathworks.com/help/releases/R2018b/vision/ref/nnet.cnn.layer.rpnsoftmaxlayer.html
https://www.mathworks.com/help/releases/R2018b/vision/ref/nnet.cnn.layer.rpnclassificationlayer.html
https://www.mathworks.com/help/releases/R2018b/vision/ref/nnet.cnn.layer.rcnnboxregressionlayer.html
https://www.mathworks.com/help/releases/R2018b/deeplearning/ug/create-custom-weighted-cross-entropy-classification-layer.html
https://www.mathworks.com/help/releases/R2018b/deeplearning/examples/define-custom-pixel-classification-layer-with-dice-loss.html
https://www.mathworks.com/help/releases/R2018b/deeplearning/ug/list-of-deep-learning-layers.html
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Image Data Augmenter: Additional options for augmenting
and visualizing images

The imageDataAugmenter object now offers more flexibility for transforming images
and visualizing the effect of the transformation.

* The augment function can apply identical random transformations to multiple images.
Use the augment function to apply identical transformations to input and response
image pairs in a custom mini-batch datastore.

You can also use the augment function to easily visualize the transformations applied
to sample images.

* The new 'RandScale' property of imageDataAugmenter scales an image uniformly
in the vertical and horizontal directions to maintain the image aspect ratio.

» Several properties of imageDataAugmenter now support sampling over disjoint
intervals or using nonuniform probability distributions. Specify a custom sampling
function using a function handle.

Deep Learning Examples: Explore deep learning workflows

New examples and topics help you progress with deep learning.

* Use the example Train Deep Learning Network to Classify New Images to fine-tune
any pretrained network for a new image classification task.

* Compare Pretrained Networks

* Transfer Learning with Deep Network Designer

» Interactive Transfer Learning Using AlexNet

* Build Networks with Deep Network Designer

* Deep Learning Tips and Tricks

* Assemble Network from Pretrained Keras Layers

» List of Deep Learning Layers

* Convert Classification Network into Regression Network

* Resume Training from Checkpoint Network

* Semantic Segmentation Using Dilated Convolutions

* Image Processing Operator Approximation Using Deep Learning
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https://www.mathworks.com/help/releases/R2018b/deeplearning/ref/imagedataaugmenter.html
https://www.mathworks.com/help/releases/R2018b/deeplearning/ref/imagedataaugmenter.augment.html
https://www.mathworks.com/help/releases/R2018b/deeplearning/examples/train-deep-learning-network-to-classify-new-images.html
https://www.mathworks.com/help/releases/R2018b/deeplearning/ug/pretrained-convolutional-neural-networks.html#mw_6ab30f15-4136-46b0-b5db-4f9b3b1cfcd2
https://www.mathworks.com/help/releases/R2018b/deeplearning/ug/transfer-learning-with-deep-network-designer.html
https://www.mathworks.com/help/releases/R2018b/deeplearning/ref/alexnet.html#mw_0bb92610-c524-4869-bd60-f9c93b2d2543
https://www.mathworks.com/help/releases/R2018b/deeplearning/ug/build-networks-with-deep-network-designer.html
https://www.mathworks.com/help/releases/R2018b/deeplearning/ug/deep-learning-tips-and-tricks.html
https://www.mathworks.com/help/releases/R2018b/deeplearning/examples/assemble-network-from-pretrained-keras-layers.html
https://www.mathworks.com/help/releases/R2018b/deeplearning/ug/list-of-deep-learning-layers.html
https://www.mathworks.com/help/releases/R2018b/deeplearning/examples/convert-classification-network-into-regression-network.html
https://www.mathworks.com/help/releases/R2018b/deeplearning/ug/resume-training-from-a-checkpoint-network.html
https://www.mathworks.com/help/releases/R2018b/deeplearning/examples/semantic-segmentation-using-dilated-convolutions.html
https://www.mathworks.com/help/releases/R2018b/deeplearning/examples/image-processing-operator-approximation-using-deep-learning.html

* Assemble Network from Pretrained Keras Layers

* Train Network Using Out-of-Memory Sequence Data

* Denoise Speech Using Deep Learning Networks

* Classify Gender Using Long Short-Term Memory Networks

New examples for text problems include:

* Classify Text Data Using Deep Learning

* Generate Text Using Deep Learning

* Pride and Prejudice and MATLAB

»  Word-By-Word Text Generation Using Deep Learning

* Classify Out-of-Memory Text Data Using Custom Mini-Batch Datastore

New examples for deep learning code generation include:

* Deep Learning Prediction with Intel MKL-DNN
* Code Generation for Denoising Deep Neural Network
* Code Generation for Semantic Segmentation Network

Functionality being removed or changed

'ValidationPatience' training option default is Inf
Behavior change

Starting in R2018b, the default value of the 'ValidationPatience' option in
trainingOptions is Inf, which means that automatic stopping via validation is turned
off. This behavior prevents the training from stopping before sufficiently learning from the
data.

In previous releases, the default value is 5. To reproduce this behavior, set the
'ValidationPatience' optionin trainingOptions to 5.

ClassNames property of ClassificationOutputLayer will be removed
Still runs

ClassNames property of ClassificationOutputLayer will be removed. Use Classes
instead. To update your code, replace all instances of the ClassNames property with
Classes. There are some differences between the functions that require additional
updates to your code.
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https://www.mathworks.com/help/releases/R2018b/deeplearning/examples/assemble-network-from-pretrained-keras-layers.html
https://www.mathworks.com/help/releases/R2018b/deeplearning/examples/train-network-using-out-of-memory-sequence-data.html
https://www.mathworks.com/help/releases/R2018b/deeplearning/examples/denoise-speech-using-deep-learning-networks.html
https://www.mathworks.com/help/releases/R2018b/deeplearning/examples/classify-gender-using-long-short-term-memory-networks.html
https://www.mathworks.com/help/releases/R2018b/deeplearning/examples/classify-text-data-using-deep-learning.html
https://www.mathworks.com/help/releases/R2018b/deeplearning/examples/generate-text-using-deep-learning.html
https://www.mathworks.com/help/releases/R2018b/deeplearning/examples/generate-text-using-character-embeddings.html
https://www.mathworks.com/help/releases/R2018b/deeplearning/examples/word-by-word-text-generation-using-deep-learning.html
https://www.mathworks.com/help/releases/R2018b/deeplearning/examples/classify-out-of-memory-text-data-using-custom-mini-batch-datastore.html
https://www.mathworks.com/help/releases/R2018b/deeplearning/examples/deep-learning-prediction-with-intel-mkl-dnn.html
https://www.mathworks.com/help/releases/R2018b/deeplearning/examples/code-generation-for-denoising-deep-neural-network.html
https://www.mathworks.com/help/releases/R2018b/deeplearning/examples/code-generation-for-semantic-segmentation-network.html
https://www.mathworks.com/help/releases/R2018b/deeplearning/ref/trainingoptions.html
https://www.mathworks.com/help/releases/R2018b/deeplearning/ref/trainingoptions.html
https://www.mathworks.com/help/releases/R2018b/deeplearning/ref/nnet.cnn.layer.classificationoutputlayer.html

R2018b

The ClassNames property contains a cell array of character vectors. The Classes
property contains a categorical array. To use the Classes property with functions that
require cell array input, convert the classes using the cellstr function.

'ClassNames' option of importKerasNetwork, importCaffeNetwork, and
importONNXNetwork will be removed
Still runs

The 'ClassNames' option of importKerasNetwork, importCaffeNetwork, and
importONNXNetwork will be removed. Use 'Classes' instead. To update your code,
replace all instances of 'ClassNames' with 'Classes'. There are some differences
between the corresponding properties in classification output layers that require
additional updates to your code.

The ClassNames property of a classification output layer is a cell array of character
vectors. The Classes property is a categorical array. To use the value of Classes with
functions that require cell array input, convert the classes using the cellstr function.

Different file name for checkpoint networks
Behavior change

Starting in R2018b, when saving checkpoint networks, the software assigns file names
beginning with net checkpoint . In previous releases, the software assigns file names
beginning with convnet checkpoint . For more information, see the
"CheckpointPath' option in trainingOptions.

If you have code that saves and loads checkpoint networks, then update your code to load
files with the new name.
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Long Short-Term Memory (LSTM) Networks: Solve regression
problems with LSTM networks and learn from full sequence
context using bidirectional LSTM layers

Use recurrent LSTM networks to solve regression problems and use bidirectional LSTM
networks to learn from full sequence context.

For an example showing how to create an LSTM network for sequence-to-sequence
regression, see Sequence-to-Sequence Regression Using Deep Learning. For an example
showing how to forecast future values in a time series, see Time Series Forecasting Using
Deep Learning.

To create an LSTM network that learns from complete sequences at each time step,
include a bidirectional LSTM layer in your network by using bilstmLayer.

Deep Learning Optimization: Improve network training using
Adam, RMSProp, and gradient clipping

Use the Adam (adaptive moment estimation) and RMSProp (root-mean-square
propagation) optimizers and gradient clipping to train deep learning neural networks.

To create training options for the Adam or RMSProp solvers, use the trainingOptions
function. trainingOptions('adam') and trainingOptions('rmsprop') create
training options for the Adam and RMSProp solvers, respectively. To specify solver
options, use the 'GradientDecayFactor', 'SquaredGradientDecayFactor', and
"Epsilon' name-value pair arguments.

To use gradient clipping when training neural networks, use the'GradientThreshold'
and 'GradientThresholdMethod' name-value pair arguments of trainingOptions.

Deep Learning Data Preprocessing: Read data and define
preprocessing operations efficiently for training and
prediction

Read and preprocess data efficiently for neural network training, prediction, and
validation. You can use a built-in type of mini-batch datastore, such as an
augmentedImageDatastore, to perform data augmentation with limited preprocessing
operations, including resizing, rotation, reflection, and cropping.


https://www.mathworks.com/help/releases/R2018a/nnet/examples/sequence-to-sequence-regression-using-deep-learning.html
https://www.mathworks.com/help/releases/R2018a/nnet/examples/time-series-forecasting-using-deep-learning.html
https://www.mathworks.com/help/releases/R2018a/nnet/examples/time-series-forecasting-using-deep-learning.html
https://www.mathworks.com/help/releases/R2018a/nnet/ref/nnet.cnn.layer.bilstmlayer.html
https://www.mathworks.com/help/releases/R2018a/nnet/ref/trainingoptions.html
https://www.mathworks.com/help/releases/R2018a/nnet/ref/augmentedimagedatastore.html

Define custom data preprocessing operations by creating your own mini-batch datastore.
You can optionally add support for functionality such as shuffling during training, parallel
and multi-GPU training, and background dispatch. For more information, see Develop
Custom Mini-Batch Datastore.

Compatibility Considerations

In previous releases, you could preprocess images with resizing, rotation, reflection, and
other geometric transformations by using an augmentedImageSource. The
augmentedImageSource function now creates an augmentedImageDatastore object.
An augmentedImageDatastore behaves similarly to an augmentedImageSource, with
additional properties and methods to assist with data augmentation.

You can now use augmentedImageDatastore for both training and prediction. In the
previous release, you could use augmentedImageSource for training but not prediction.

Deep Learning Layer Validation: Check layers for validity, GPU
compatibility, and correctly defined gradients

If you create a custom deep learning layer, then you can check that your layer is valid and
GPU compatible, and that it calculates gradients correctly, by using checkLayer.

Directed Acyclic Graph (DAG) Networks: Accelerate DAG
network training using multiple GPUs and compute
intermediate layer activations

Speed up training of deep learning DAG networks using multiple GPUs. To train networks
using multiple GPUs, specify the 'ExecutionEnvironment' name-value pair argument
of trainingOptions.

To use DAG networks for feature extraction or visualization of layer activations, use the
activations function.

Confusion Matrix: Plot confusion matrices for categorical
labels

Plot confusion matrices for categorical labels by using the plotconfusion function.
plotconfusion(targets,outputs) plots a confusion matrix for the true labels
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targets and the predicted labels outputs. For an example, see Plot Confusion Matrix
Using Categorical Labels.

Multispectral Deep Learning: Train convolutional neural
networks on multispectral images

Train convolutional neural networks on images with an arbitrary number of channels. To
specify the number of input channels to a network, set the InputSize property of the
image input layer. For an example, see Semantic Segmentation of Multispectral Images
Using Deep Learning.

Directed Acyclic Graph (DAG) Network Editing: Replace a layer
in a layer graph more easily

Easily replace a layer in a LayerGraph object with a new layer or array of layers by using
the replacelLayer function. In previous releases, you could replace layers by editing the
layer graph, but you had to update the layer connections manually. The new function
updates the layer connections automatically.

The replacelLayer function requires the Neural Network Toolbox Importer for
TensorFlow-Keras Models support package. If this support package is not installed, type
importKeraslLayer or importKerasNetwork in the command line for a download link.

Pretrained Networks: Accelerate transfer learning by freezing
layer weights

Speed up training of pretrained convolutional neural networks by freezing the weights of
initial network layers. Freeze the layer weights by setting the learning rate factors of the
layers to zero. If you freeze the weights of the initial layers of a network, then
trainNetwork does not compute the gradients of the frozen layer weights. For an
example showing how to freeze layer weights, see Transfer Learning Using GoogLeNet.

Pretrained Networks: Transfer learning with pretrained
SqueezeNet and Inception-ResNet-v2 convolutional neural
networks

You can now install add-ons for the SqueezeNet and Inception-ResNet-v2 pretrained
convolutional neural networks. To download and install the pretrained networks, use the
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Add-On Explorer. You can also download the networks from MathWorks Neural Network
Toolbox Team. After you install the add-ons, use the squeezenet and
inceptionresnetv2 functions to load the networks, respectively.

To retrain a network on a new classification task, follow the steps of Transfer Learning
Using GoogLeNet. Load a SqueezeNet or Inception-ResNet-v2 network instead of
GoogLeNet, and change the names of the layers that you remove and connect to match
the names of your pretrained network. For more information, see squeezenet and
inceptionresnetv2.

For more information on pretrained neural networks in MATLAB, see Pretrained
Convolutional Neural Networks.

Deep Learning Network Analyzer: Visualize, analyze, and find
issues in network architectures

Analyze deep learning network architectures using the analyzeNetwork function. Use
the network analyzer to visualize and understand the network architecture, check that
you have defined the architecture correctly, and detect problems before training.
Problems that analyzeNetwork detects include missing or disconnected layers,
mismatching or incorrect sizes of layer inputs, incorrect number of layer inputs, and
invalid graph structures.

The analyzeNetwork function requires the Deep Learning Network Analyzer for Neural
Network Toolbox support package. To download and install support package, use the Add-
On Explorer. You can also download the support package from MathWorks Neural
Network Toolbox Team. For more information, see analyzeNetwork.

ONNX Support: Import and export models using the ONNX
model format for interoperability with other deep learning
frameworks

Export a trained MATLAB deep learning network to the ONNX (Open Neural Network
Exchange) model format using the exportONNXNetwork function. You can then import
the ONNX model to other deep learning frameworks, such as TensorFlow, that support
ONNX model import.

Import deep learning networks and network architectures from ONNX using
importONNXNetwork and importONNXLayers.
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Deep Learning Speech Recognition: Train a simple deep
learning model to detect speech commands

Use the Deep Learning Speech Recognition example to learn how to train a simple neural
network to recognize a given set of speech commands (Requires Audio Toolbox™).

Parallel Deep Learning Workflows: Explore deep learning with
multiple GPUs locally or in the cloud

Use new examples to explore options for scaling up deep learning training. You can use
multiple GPUs locally or in the cloud without changing your code. Use parallel computing
to train multiple networks locally or on cloud clusters, and use datastores to access cloud
data. New examples include:

* Train Network in the Cloud Using Built-in Parallel Support

* Use parfor to Train Multiple Deep Learning Networks

» Use parfeval to Train Multiple Deep Learning Networks

* Upload Deep Learning Data to the Cloud

* Send Deep Learning Batch Job To Cluster

To learn about options, see Scale Up Deep Learning in Parallel and in the Cloud.

Deep Learning Examples: Explore deep learning applications

Use examples to learn about different applications of deep learning. New examples for
sequence, time series, text, and image problems include:

* Deep Learning Speech Recognition

* Train Residual Network on CIFAR-10

* Time Series Forecasting Using Deep Learning

* Sequence-to-Sequence Classification Using Deep Learning

* Sequence-to-Sequence Regression Using Deep Learning

» Classify Text Data Using Deep Learning

* Semantic Segmentation of Multispectral Images Using Deep Learning

» Single Image Super-Resolution Using Deep Learning
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* JPEG Image Deblocking Using Deep Learning

* Remove Noise from Color Image Using Pretrained Neural Network

For more examples of deep learning applications, see Deep Learning Applications and

Deep Learning GPU Code Generation.

Functionality Being Removed or Changed

Functionality

Result

Use Instead

Compatibility
Considerations

Default output
format of
activations

Still runs

Not applicable

In R2018a, the new
default output format
of activationsisa
4-D array. To
reproduce the old
default behavior, set
the 'OutputAs’
value to 'rows"'.

augmentedImageSo
urce

Still runs

augmentedImageDa
tastore

In R2018a, you
cannot create an
augmentedImageSo
urce object. The
augmentedImageSo
urce function now
creates an
augmentedImageDa
tastore object.

OutputSize
property of
lstmLayer

Still runs

NumHiddenUnits
property

Replace all instances
of the QutputSize
property of
lstmLayer objects
with
NumHiddenUnits.



https://www.mathworks.com/help/releases/R2018a/images/jpeg-image-deblocking-using-deep-learning.html
https://www.mathworks.com/help/releases/R2018a/images/remove-noise-from-color-image-using-pretrained-neural-network.html
https://www.mathworks.com/help/releases/R2018a/nnet/deep-learning-applications.html
https://www.mathworks.com/help/releases/R2018a/nnet/deep-learning-gpu-code-generation.html
https://www.mathworks.com/help/releases/R2018a/nnet/ref/activations.html
https://www.mathworks.com/help/releases/R2018a/nnet/ref/activations.html
https://www.mathworks.com/help/releases/R2018a/nnet/ref/augmentedimagesource.html
https://www.mathworks.com/help/releases/R2018a/nnet/ref/augmentedimagesource.html
https://www.mathworks.com/help/releases/R2018a/nnet/ref/augmentedimagedatastore.html
https://www.mathworks.com/help/releases/R2018a/nnet/ref/augmentedimagedatastore.html
https://www.mathworks.com/help/releases/R2018a/nnet/ref/nnet.cnn.layer.lstmlayer.html
https://www.mathworks.com/help/releases/R2018a/nnet/ref/nnet.cnn.layer.lstmlayer.html




R2017b

Version: 11.0
New Features
Bug Fixes

Compatibility Considerations



R2017b

Directed Acyclic Graph (DAG) Networks: Create deep learning
networks with more complex architecture to improve
accuracy and use many popular pretrained models

You can create and train DAG networks for deep learning. A DAG network is a neural
network whose layers can be arranged as a directed acyclic graph. DAG networks can
have a more complex architecture with layers that have inputs from, or outputs to,
multiple layers.

To create and train a DAG network:

* Create a LayerGraph object using layerGraph. The layer graph specifies the
network architecture. You can create an empty layer graph and then add layers to it.
You can also create a layer graph directly from an array of network layers. The layers
in the graph are automatically connected sequentially.

* Add layers to the layer graph using addLayers and remove layers from the graph
using removelLayers.

* Connect layers of the layer graph using connectLayers and disconnect layers using
disconnectLayers.

* Plot the network architecture using plot.

» Train the network using the layer graph as the layers input argument to
trainNetwork. The trained network is a DAGNetwork object.

* Perform classification and prediction on new data using classify and predict.

For an example showing how to create and train a DAG network, see Create and Train
DAG Network for Deep Learning.

You can also load a pretrained DAG network by installing the Neural Network Toolbox
Model for GoogLeNet Network add-on. For a transfer learning example, see Transfer
Learning Using GoogLeNet. For more information, see googlenet.

Long Short-Term Memory (LSTM) Networks: Create deep
learning networks with the LSTM recurrent neural network
topology for time-series classification and prediction

You can create and train LSTM networks for deep learning. LSTM networks are a type of

recurrent neural network (RNN) that learn long-term dependencies between time steps of
sequence data.
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LSTM networks can be used for the following types of problems:

* Predict labels for a time series (sequence-to-label classification).
* Predict a sequence of labels for a time series (sequence-to-sequence classification).

To create an LSTM network:
* Include a sequence input layer using sequenceInputlLayer, which inputs time-series

data into the network.

* Include an LSTM layer using LstmLayer, which defines the LSTM architecture of the
network.

For an example showing sequence-to-label classification, see Classify Sequence Data
Using LSTM Networks.

You might want to make multiple predictions on parts of a long sequence, or might not
have the complete time series in advance. For these tasks, you can make the LSTM
network remember and forget the network state between predictions. To configure the
state of LSTM networks, use the following functions:

* Make predictions and update the network state using classifyAndUpdateState
and predictAndUpdateState.
* Reset the network state using resetState.

To learn more, see Long Short-Term Memory Networks.

Deep Learning Validation: Automatically validate network and
stop training when validation metrics stop improving

You can validate deep neural networks at regular intervals during network training, and
automatically stop training when validation metrics stop improving.

To perform network validation during training, specify validation data using the
'ValidationData' name-value pair argument of trainingOptions. By default, the
software validates the network every 50 training iterations by predicting the response of
the validation data and calculating the validation loss and accuracy (root mean square
error for regression networks). You can change the validation frequency using the
'ValidationFrequency' name-value pair argument.

Network training stops when the validation loss stops improving. By default, if the
validation loss is larger than or equal to the previously smallest loss five times in a row,
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then network training stops. To change the number of times that the validation loss is
allowed to not decrease before training stops, use the 'ValidationPatience' name-value
pair argument.

For more information, see Specify Validation Data.

Deep Learning Layer Definition: Define new layers with
learnable parameters, and specify loss functions for
classification and regression output layers

You can define new deep learning layers and specify your own forward propagation,
backward propagation, and loss functions. To learn more, see Define New Deep Learning
Layers.

* For an example showing how to define a PReLU layer, a layer with learnable
parameters, see Define a Layer with Learnable Parameters.

* For an example showing how to define a classification output layer and specify a loss
function, see Define a Classification Output Layer.

» For an example showing how to define a regression output layer and specify a loss
function, see Define a Regression Output Layer.

Deep Learning Training Plots: Monitor training progress with
plots of accuracy, loss, validation metrics, and more

You can monitor deep learning training progress by plotting various metrics during
training. Plot accuracy, loss, and validation metrics to determine if and how quickly the
network accuracy is improving, and whether the network is starting to overfit the training
data. During training, you can stop training and return the current state of the network
by clicking the stop button in the top-right corner. For example, you might want to stop
training when the accuracy of the network reaches a plateau and it is clear that the
accuracy is no longer improving.

To turn on the training progress plot, use the 'Plots' name-value pair argument of
trainingOptions. For more information, see Monitor Deep Learning Training Progress.
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Deep Learning Image Preprocessing: Efficiently resize and
augment image data for training

You can now preprocess images for network training with more options, including
resizing, rotation, reflection, and other geometric transformations. To train a network
using augmented images, create an augmentedImageSource and use it as an input
argument to trainNetwork. You can configure augmentation options using the
imageDataAugmenter function. For more information, see Preprocess Images for Deep
Learning.

Augmentation helps to prevent the network from overfitting and memorizing the exact
details of the training images. It also increases the effective size of the training data set
by generating new images based on the training images. For example, use augmentation
to generate new images that randomly flip the training images along the vertical axis, and
randomly translate the training images horizontally and vertically.

To resize images in other contexts, such as for prediction, classification, and network
validation during training, use imresize.

Compatibility Considerations

In previous releases, you could perform limited image cropping and reflection using the
DataAugmentation property of imageInputLayer. The DataAugmentation property
is not recommended. Use augmentedImageSource instead.

Bayesian Optimization of Deep Learning: Find optimal
settings for training deep networks (Requires Statistics and
Machine Learning Toolbox)

Find optimal network parameters and training options for deep learning using Bayesian

optimization and the bayesopt (Statistics and Machine Learning Toolbox™ ) function. For
an example, see Deep Learning Using Bayesian Optimization.

GooglLeNet Pretrained Network: Transfer learning with
pretrained GoogLeNet convolutional neural network

You can now install the Neural Network Toolbox Model for GoogLeNet Network add-on.
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You can access the model using the googlenet function. If the Neural Network Toolbox
Model for GoogLeNet Network support package is not installed, then the function
provides a link to the required support package in the Add-On Explorer. GoogLeNet won
the ImageNet Large-Scale Visual Recognition Challenge in 2014. The network is smaller
and typically faster than VGG networks, and smaller and more accurate than AlexNet on
the ImageNet challenge data set. The network is a directed acyclic graph (DAG) network,
and googlenet returns the network as a DAGNetwork object. You can use this
pretrained model for classification and transfer learning. For an example, see Transfer
Learning Using GoogLeNet. For more information on pretrained neural networks in
MATLAB, see Pretrained Convolutional Neural Networks.

ResNet-50 and ResNet-101 Pretrained Networks: Transfer
learning with pretrained ResNet-50 and ResNet-101
convolutional neural networks

You can now install add-ons for the ResNet-50 and ResNet-101 pretrained convolutional
neural networks. To download and install the pretrained networks, use the Add-On
Explorer. To learn more about finding and installing add-ons, see Get Add-Ons (MATLAB).
You can also download the networks from MathWorks Neural Network Toolbox Team.
After you install the add-ons, use the resnet50 and resnet101 functions to load the
networks, respectively.

To retrain a network on a new classification task, follow the steps of Transfer Learning
Using GoogLeNet. Load a ResNet network instead of GoogLeNet, and change the names
of the layers that you remove and connect to match the names of the ResNet layers. To
extract the layers and architecture of the network for further processing, use
layerGraph. For more information, see resnet50 and resnet101.

For more information on pretrained neural networks in MATLAB, see Pretrained
Convolutional Neural Networks.

Inception-v3 Pretrained Network: Transfer learning with
pretrained Inception-v3 convolutional neural network

You can now install the add-on for the Inception-v3 pretrained convolutional neural
network. To download and install the pretrained network, use the Add-On Explorer. To
learn more about finding and installing add-ons, see Get Add-Ons (MATLAB). You can also
download the network from MathWorks Neural Network Toolbox Team. After you install
the add-on, use the inceptionv3 function to load the network.
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To retrain the network on a new classification task, follow the steps of Transfer Learning
Using GoogLeNet. Load the Inception-v3 network instead of GoogLeNet, and change the
names of the layers that you remove and connect to match the names of the Inception-v3
layers. To extract the layers and architecture of the network for further processing, use
layerGraph. For more information, see inceptionv3.

For more information on pretrained neural networks in MATLAB, see Pretrained
Convolutional Neural Networks.

Batch Normalization Layer: Speed up network training and
reduce sensitivity to network initialization

Use batch normalization layers between convolutional layers and nonlinearities, such as
RelU layers, to speed up network training and reduce the sensitivity to network
initialization. Batch normalization layers normalize the activations and gradients
propagating through a neural network, making network training an easier optimization
problem. To take full advantage of this fact, you can try increasing the learning rate.
Because the optimization problem is easier, the parameter updates can be larger and the
network can learn faster.

To create a batch normalization layer, use batchNormalizationLayer.

Deep Learning: New network layers

You can now use the following layers in deep learning networks:

* Batch normalization layer — Create a layer using batchNormalizationLayer.

» Transposed convolution layer — Create a layer using transposedConv2dLayer.

* Max unpooling layer — Create a layer using maxUnpooling2dLayer.

» Leaky Rectified Linear Unit (ReLU) layer — Create a layer using leakyRelulLayer.

* Clipped Rectified Linear Unit (ReLU) layer — Create a layer using
clippedRelulLayer.

* Addition layer — Create a layer using additionLayer.
* Depth concatenation layer — Create a layer using depthConcatenationLayer.

* Sequence input layer for long short-term memory (LSTM) networks — Create a layer
using sequencelInputLayer.


https://www.mathworks.com/help/releases/R2017b/nnet/examples/transfer-learning-using-googlenet.html
https://www.mathworks.com/help/releases/R2017b/nnet/examples/transfer-learning-using-googlenet.html
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https://www.mathworks.com/help/releases/R2017b/nnet/ref/nnet.cnn.layer.transposedconv2dlayer.html
https://www.mathworks.com/help/releases/R2017b/nnet/ref/nnet.cnn.layer.maxunpooling2dlayer.html
https://www.mathworks.com/help/releases/R2017b/nnet/ref/nnet.cnn.layer.leakyrelulayer.html
https://www.mathworks.com/help/releases/R2017b/nnet/ref/nnet.cnn.layer.clippedrelulayer.html
https://www.mathworks.com/help/releases/R2017b/nnet/ref/nnet.cnn.layer.additionlayer.html
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* LSTM layer — Create a layer using LSTMLayer.

Pretrained Models: Import pretrained CNN models and layers
from TensorFlow-Keras

You can import pretrained CNN models and weights from TensorFlow-Keras by using the
importKerasNetwork function. This function imports a Keras model as a
SeriesNetwork or DAGNetwork object, depending on the type of the Keras network. You
can then use the imported classification or regression model for prediction or transfer
learning on new data.

Alternatively, you can import CNN layers from TensorFlow-Keras by using the
importKerasLayers function. This function imports the network architecture as a
Layerarray or LayerGraph object. You can then specify the training options using the
trainingOptions function and train this network using the trainNetwork function.

For both importKerasNetwork and importKerasLayers, you must install the Neural

Network Toolbox Importer for TensorFlow-Keras Models add-on from the MATLAB® Add-
Ons menu.

Functionality Being Removed or Changed

Functionality Result Use Instead Compatibility
Considerations

DataAugmentation |Still runs augmentedImageSo |The

property of the urce DataAugmentation
imageInputlLayer property of
imageInputlLayer
is not recommended.
Use
augmentedImageSo
urce instead. For
more information,
see Preprocess
Images for Deep

Learning.



https://www.mathworks.com/help/releases/R2017b/nnet/ref/nnet.cnn.layer.lstmlayer.html
https://www.mathworks.com/help/releases/R2017b/nnet/ref/importkerasnetwork.html
https://www.mathworks.com/help/releases/R2017b/nnet/ref/seriesnetwork.html
https://www.mathworks.com/help/releases/R2017b/nnet/ref/dagnetwork.html
https://www.mathworks.com/help/releases/R2017b/nnet/ref/importkeraslayers.html
https://www.mathworks.com/help/releases/R2017b/nnet/ref/nnet.cnn.layer.layer.html
https://www.mathworks.com/help/releases/R2017b/nnet/ref/nnet.cnn.layergraph.html
https://www.mathworks.com/help/releases/R2017b/nnet/ref/trainingoptions.html
https://www.mathworks.com/help/releases/R2017b/nnet/ref/trainnetwork.html
https://www.mathworks.com/help/releases/R2017b/nnet/ref/nnet.cnn.layer.imageinputlayer.html
https://www.mathworks.com/help/releases/R2017b/nnet/ref/augmentedimagesource.html
https://www.mathworks.com/help/releases/R2017b/nnet/ref/augmentedimagesource.html
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https://www.mathworks.com/help/releases/R2017b/nnet/ug/preprocess-images-for-deep-learning.html
https://www.mathworks.com/help/releases/R2017b/nnet/ug/preprocess-images-for-deep-learning.html

Functionality Result Use Instead Compatibility
Considerations
Padding property of |Warns PaddingSize Replace all instances
Convolution2dLay property of of Padding property
er, Convolution2dLay |with PaddingSize.
MaxPooling2dLaye er, When you create
r, and MaxPooling2dLaye |network layers, use
AveragePooling2d r, and the 'Padding'
Layer objects AveragePooling2d |name-value pair

Layer objects

argument to specify
the padding. For
more information,
see
Convolution2dLay
er,
MaxPooling2dLaye
r, and
AveragePooling2d
Layer.
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Deep Learning for Regression: Train convolutional neural
networks (also known as ConvNets, CNNs) for regression
tasks

You can now perform regression for numeric targets (responses) using convolutional
neural networks. While defining your network, specify regressionlLayer as the last
layer. Specify the training parameters using the trainingOptions function. Train your
network using the trainNetwork function. To try a regression example showing how to
predict angles of rotation of handwritten digits, see Train a Convolutional Neural
Network for Regression.

Pretrained Models: Transfer learning with pretrained CNN
models AlexNet, VGG-16, and VGG-19, and import models
from Caffe (including Caffe Model Zoo)

For pretrained convolutional neural network (CNN) models, AlexNet, VGG-16, and
VGG-19, from the MATLAB Add-Ons menu, you can now install the following add-ons:

* Neural Network Toolbox Model for AlexNet Network
* Neural Network Toolbox Model for VGG-16 Network
* Neural Network Toolbox Model for VGG-19 Network

You can access the models using the functions alexnet, vggl6, and vggl9. These
models are SeriesNetwork objects. You can use these pretrained models for
classification and transfer learning.

You can also import other pretrained CNN models from Caffe by using the
importCaffeNetwork function. This function imports models as a SeriesNetwork
object. You can then use these models for classifying new data.

Alternatively, you can import CNN layers from Caffe by using the importCaffelLayers
function. This function imports the layer architecture as a Layer array. You can then
specify the training options using the trainingOptions function and train this network
using the trainNetwork function.

For both importCaffeNetwork and importCaffelLayers, you can install the Neural
Network Toolbox Importer for Caffe Models add-on from the MATLAB® Add-Ons menu.


https://www.mathworks.com/help/releases/R2017a/nnet/ref/regressionlayer.html
https://www.mathworks.com/help/releases/R2017a/nnet/ref/trainingoptions.html
https://www.mathworks.com/help/releases/R2017a/nnet/ref/trainnetwork.html
https://www.mathworks.com/help/releases/R2017a/nnet/examples/train-a-convolutional-neural-network-for-regression.html
https://www.mathworks.com/help/releases/R2017a/nnet/examples/train-a-convolutional-neural-network-for-regression.html
https://www.mathworks.com/help/releases/R2017a/nnet/ref/alexnet.html
https://www.mathworks.com/help/releases/R2017a/nnet/ref/vgg16.html
https://www.mathworks.com/help/releases/R2017a/nnet/ref/vgg19.html
https://www.mathworks.com/help/releases/R2017a/nnet/ref/seriesnetwork-class.html
https://www.mathworks.com/help/releases/R2017a/nnet/ref/importcaffenetwork.html
https://www.mathworks.com/help/releases/R2017a/nnet/ref/seriesnetwork-class.html
https://www.mathworks.com/help/releases/R2017a/nnet/ref/importcaffelayers.html
https://www.mathworks.com/help/releases/R2017a/nnet/ref/layer-class.html
https://www.mathworks.com/help/releases/R2017a/nnet/ref/trainingoptions.html
https://www.mathworks.com/help/releases/R2017a/nnet/ref/trainnetwork.html

Deep Learning with Cloud Instances: Train convolutional
neural networks using multiple GPUs in MATLAB and MATLAB
Distributed Computing Server for Amazon EC2

You can use MATLAB to perform deep learning in the cloud using Amazon Elastic
Compute Cloud (Amazon EC2®) with new P2 instances and data stored in the cloud. If you
do not have a suitable GPU available for faster training of a convolutional neural network,
you can use Amazon Elastic Compute Cloud instead. Try different numbers of GPUs per
machine to accelerate training. You can compare and explore the performance of multiple
deep neural network configurations to find the best tradeoff of accuracy and memory use.
Deep learning in the cloud also requires Parallel Computing Toolbox™. For details, see
Deep Learning in the Cloud.

Deep Learning with Multiple GPUs: Train convolutional neural
networks on multiple GPUs on PCs (using Parallel Computing
Toolbox) and clusters (using MATLAB Distributed Computing
Server)

You can now train convolutional neural networks (ConvNets) on multiple GPUs and on
clusters. Specify the required hardware using the ExecutionEnvironment name-value
pair argument in the call to the trainingOptions function.

Deep Learning with CPUs: Train convolutional neural networks
on CPUs as well as GPUs

You can now train a convolutional neural network (ConvNet) on a CPU using the
trainNetwork function. If there is no available GPU, by default, then trainNetwork
uses a CPU to train the network. You can also train a ConvNet on multiple CPU cores on
your desktop or a cluster using 'ExecutionEnvironment', 'parallel’.

For specifying the hardware on which to train the network, and for system requirements,
see the ExecutionEnvironment name-value pair argument on trainingOptions.

Deep Learning Visualization: Visualize the features ConvNet
has learned using deep dream and activations

deepDreamImage synthesizes images that strongly activate convolutional neural network
(ConvNet) layers using a version of the deep dream algorithm. Visualizing these images
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highlights the features your trained ConvNet has learned, helping you understand and
diagnose network behavior. For examples, see Deep Dream Images Using AlexNet and
Visualize Features of a Convolutional Neural Network.

You can also display network activations on an image to investigate features the network
has learned to identify. To try an example, see Visualize Activations of a Convolutional
Neural Network.

table Support: Use data in tables for training of and inference
with ConvNets

The trainNetwork function and predict, activations, and classify methods now
accept data stored in a table for classification and regression problems. For details on
how to specify your data, see the input argument descriptions on the function and method

pages.

Progress Tracking During Training: Specify custom functions
for plotting accuracy or stopping at a threshold

When training convolutional neural networks, you can specify one or more custom
functions to call at each iteration during training. You can access and act on information
during training, for example, to plot accuracy, or stop training early based on a threshold.
Specify the functions using the OutputFcn name-value pair argument in
trainingOptions. For examples, see Plot Training Accuracy During Network Training
and Plot Progress and Stop Training at Specified Accuracy.

Deep Learning Examples: Get started quickly with deep
learning

New examples and topics help you get started quickly with deep learning in MATLAB.

To find out what tasks you can do, see Deep Learning in MATLAB. To learn about
convolutional neural networks and how they work in MATLAB, see:

* Introduction to Convolutional Neural Networks
* Specify Layers of Convolutional Neural Network
* Set Up Parameters and Train Convolutional Neural Network

New examples include:


https://www.mathworks.com/help/releases/R2017a/nnet/examples/deep-dream-images-using-alexnet.html
https://www.mathworks.com/help/releases/R2017a/nnet/examples/visualize-features-of-a-convolutional-neural-network.html
https://www.mathworks.com/help/releases/R2017a/nnet/examples/visualize-activations-of-a-convolutional-neural-network.html
https://www.mathworks.com/help/releases/R2017a/nnet/examples/visualize-activations-of-a-convolutional-neural-network.html
https://www.mathworks.com/help/releases/R2017a/nnet/ref/trainnetwork.html
https://www.mathworks.com/help/releases/R2017a/nnet/ref/seriesnetwork.predict.html
https://www.mathworks.com/help/releases/R2017a/nnet/ref/seriesnetwork.activations.html
https://www.mathworks.com/help/releases/R2017a/nnet/ref/seriesnetwork.classify.html
https://www.mathworks.com/help/releases/R2017a/nnet/ref/trainingoptions.html
https://www.mathworks.com/help/releases/R2017a/nnet/ref/trainingoptions.html#bvniuj4
https://www.mathworks.com/help/releases/R2017a/nnet/ref/trainingoptions.html#bvnn789
https://www.mathworks.com/help/releases/R2017a/nnet/ug/deep-learning-in-matlab.html
https://www.mathworks.com/help/releases/R2017a/nnet/ug/introduction-to-convolutional-neural-networks.html
https://www.mathworks.com/help/releases/R2017a/nnet/ug/layers-of-a-convolutional-neural-network.html
https://www.mathworks.com/help/releases/R2017a/nnet/ug/setting-up-parameters-and-training-of-a-convnet.html

Try Deep Learning in 10 Lines of MATLAB Code

Create Simple Deep Learning Network for Classification
Transfer Learning and Fine-Tuning of Convolutional Neural Networks
Transfer Learning Using AlexNet

Feature Extraction Using AlexNet

Deep Dream Images Using AlexNet

Visualize Activations of a Convolutional Neural Network
Visualize Features of a Convolutional Neural Network
Create Typical Convolutional Neural Networks

Plot Training Accuracy During Network Training

Plot Progress and Stop Training at Specified Accuracy
Resume Training from a Checkpoint Network

Train a Convolutional Neural Network for Regression

3-5


https://www.mathworks.com/help/releases/R2017a/nnet/ug/deep-learning-in-matlab.html#bvoxagv-1
https://www.mathworks.com/help/releases/R2017a/nnet/examples/create-simple-deep-learning-network-for-classification.html
https://www.mathworks.com/help/releases/R2017a/nnet/examples/transfer-learning-and-fine-tuning-of-convolutional-neural-networks.html
https://www.mathworks.com/help/releases/R2017a/nnet/ref/alexnet.html#bvn44n6
https://www.mathworks.com/help/releases/R2017a/nnet/ref/alexnet.html#bvnymj9
https://www.mathworks.com/help/releases/R2017a/nnet/examples/deep-dream-images-using-alexnet.html
https://www.mathworks.com/help/releases/R2017a/nnet/examples/visualize-activations-of-a-convolutional-neural-network.html
https://www.mathworks.com/help/releases/R2017a/nnet/examples/visualize-features-of-a-convolutional-neural-network.html
https://www.mathworks.com/help/releases/R2017a/nnet/ref/layer-class.html#bu7ux9v-1
https://www.mathworks.com/help/releases/R2017a/nnet/ref/trainingoptions.html#bvniuj4
https://www.mathworks.com/help/releases/R2017a/nnet/ref/trainingoptions.html#bvnn789
https://www.mathworks.com/help/releases/R2017a/nnet/ug/resume-training-from-a-checkpoint-network.html
https://www.mathworks.com/help/releases/R2017a/nnet/examples/train-a-convolutional-neural-network-for-regression.html




R2016b

Version: 9.1
New Features
Bug Fixes

Compatibility Considerations



R2016b

6-2

Deep Learning with CPUs: Run trained CNNs to extract
features, make predictions, and classify data on CPUs as well
as GPUs

You can choose a CPU to run a pretrained network for extracting features using
activations, predicting image class scores using predict, and estimating image
classes using classify. To specify the hardware on which to run the network, use the
"ExecutionEnvironment' name-value pair argument in the call to the specific method.

Training a convolutional neural network (ConvNet) requires a GPU. To train a ConvNet, or
to run a pretrained network on a GPU, you must have Parallel Computing Toolbox and a
CUDAP®-enabled NVIDIA® GPU with compute capability 3.0 or higher.

Deep Learning with Arbitrary Sized Images: Run trained CNNs
on images that are different sizes than those used for training

You can run a trained convolutional neural network on arbitrary image sizes to extract
features using the activations method with channels output option. For other output
options, the sizes of the images you use in activations must be the same as the sizes of
the ones used for training. To specify the channels output option, use the OutputAs
name-value pair argument in the call to activations.

Performance: Train CNNs faster when using ImageDatastore
object

ImageDatastore allows batch-reading of JPG or PNG image files using prefetching. This
feature enables faster training of convolutional neural networks (ConvNets). If you use a
custom function for reading the images, prefetching does not occur.

Deploy Training of Models: Deploy training of a neural
network model via MATLAB Compiler or MATLAB Compiler SDK
Use MATLAB Runtime to deploy functions that can train a model. You can deploy MATLAB
code that trains neural networks as described in Create Standalone Application from

Command Line and Package Standalone Application with Application Compiler App.

The following methods and functions are NOT supported in deployed mode:


https://www.mathworks.com/help/releases/R2016b/nnet/ref/seriesnetwork.activations.html
https://www.mathworks.com/help/releases/R2016b/nnet/ref/seriesnetwork.predict.html
https://www.mathworks.com/help/releases/R2016b/nnet/ref/seriesnetwork.classify.html
https://www.mathworks.com/help/releases/R2016b/nnet/ref/seriesnetwork.activations.html
https://www.mathworks.com/help/releases/R2016b/compiler/compile-a-standalone-application-from-the-command-line.html
https://www.mathworks.com/help/releases/R2016b/compiler/compile-a-standalone-application-from-the-command-line.html
https://www.mathworks.com/help/releases/R2016b/compiler/compile-a-standalone-application-with-the-standalone-compiler-app.html

* Training progress dialog, nntraintool.

* genFunction and gensim to generate MATLAB code or Simulink® blocks
* view method

* nctool, nftool, nnstart, nprtool, ntstool

* Plot functions (such as plotperform, plottrainstate, ploterrhist,
plotregression, plotfit, and so on)

generateFunction Method: generateFunction generates code
for matrices by default

'MatrixOnly' name-value pair argument of generateFunction method has no effect.
generateFunction by default generates code for only matrices.

Compatibility Considerations

You do not need to specify for generateFunction to generate code for matrices.
Previously, you needed to specify 'MatrixOnly', true.

alexnet Support Package: Download and use pre-trained
convolutional neural network (ConvNet)

You can use pretrained Caffe version of AlexNet convolutional neural network. Download
the network from the Add-Ons menu.

For more information about the network, see Pretrained Convolutional Neural Network.
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Deep Learning: Train deep convolutional neural networks with
built-in GPU acceleration for image classification tasks (using
Parallel Computing Toolbox)

The new functionality enables you to

* Construct convolutional neural network (CNN) architecture (see Layer).

* Specify training options using trainingOptions.

* Train CNNs using trainNetwork for data in 4D arrays or ImageDatastore.

» Make predictions of class labels using a trained network using predict or classify.
» Extract features from a trained network using activations.

* Perform transfer learning. That is, retrain the last fully connected layer of an existing
CNN on new data.

NOTE: This feature requires the Parallel Computing Toolbox and a CUDA-enabled
NVIDIA GPU with compute capability 3.0 or higher.


https://www.mathworks.com/help/releases/R2016a/nnet/ref/layer-class.html
https://www.mathworks.com/help/releases/R2016a/nnet/ref/trainingoptions.html
https://www.mathworks.com/help/releases/R2016a/nnet/ref/trainnetwork.html
https://www.mathworks.com/help/releases/R2016a/matlab/ref/imagedatastore-object.html
https://www.mathworks.com/help/releases/R2016a/nnet/ref/seriesnetwork.predict.html
https://www.mathworks.com/help/releases/R2016a/nnet/ref/seriesnetwork.classify.html
https://www.mathworks.com/help/releases/R2016a/nnet/ref/seriesnetwork.activations.html
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Autoencoder neural networks for unsupervised learning of
features using the trainAutoencoder function

You can train autoencoder neural networks to learn features using the
trainAutoencoder function. The trained network is an Autoencoder object. You can
use the trained autoencoder to predict the inputs for new data, using the predict
method. For all the properties and methods of the object, see the Autoencoder class

page.

Deep learning using the stack function for creating deep
networks from autoencoders

You can create deep networks using the stack method. To create a deep network, after
training the autoencoders, you can
Extract features from autoencoders using the encode method.
Train a softmax layer for classification using the trainSoftmaxLayer function.
Stack the encoders and the softmax layer to form a deep network, and train the deep
network.

The deep network is a network object.

Improved speed and memory efficiency for training with
Levenberg-Marquardt (trainlm) and Bayesian Regularization
(trainbr) algorithms

An optimized MEX version of the Jacobian backpropagation algorithm allows faster

training and reduces memory requirements for training static and open-loop networks
using the trainlm and trainbr functions.

Cross entropy for a single target variable

The crossentropy function supports binary encoding, that is, when there are only two
classes and N = 1 (N is the number of rows in the targets input argument).
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Progress update display for parallel training

The Neural Network Training tool (nntraintool) now displays progress updates when
conducting parallel training of a network.
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Training panels for Neural Fitting Tool and Neural Time Series
Tool Provide Choice of Training Algorithms

The training panels in the Neural Fitting and Neural Time Series tools now let you select
a training algorithm before clicking Train. The available algorithms are:

* Levenberg-Marquardt (trainlm)

* Bayesian Regularization (trainbr)

* Scaled Conjugate Gradient (trainscg)

For more information on using Neural Fitting, see Fit Data with a Neural Network.

For more information on using Neural Time Series, see Neural Network Time Series
Prediction and Modeling.

Bayesian Regularization Supports Optional Validation Stops

Because Bayesian-Regularization with trainbr can take a long time to stop, validation
used with Bayesian-Regularization allows it to stop earlier, while still getting some of the
benefits of weight regularization. Set the training parameter trainParam.max_fail to
specify when to make a validation stop. Validation is disabled for trainbr by default
when trainParam.max_ fail is set to 0.

For example, to train as before without validation:

[x,t] = house dataset;
net = feedforwardnet (10, 'trainbr');
[net,tr] = train(net,x,t);

To train with validation:
[x,t] = house dataset;
net = feedforwardnet (10, 'trainbr');

net.trainParam.max_fail = 6;
[net,tr] = train(net,x,t);

Neural Network Training Tool Shows Calculations Mode

Neural Network Training Tool now shows its calculations mode (i.e., MATLAB, GPU) in its
Algorithms section.


https://www.mathworks.com/help/releases/R2014a/nnet/gs/fit-data-with-a-neural-network.html
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Function code generation for application deployment of
neural network simulation (using MATLAB Coder, MATLAB
Compiler, and MATLAB Builder products)

* “New Function: genFunction” on page 12-2
* “Enhanced Tools” on page 12-4

New Function: genFunction

The function genFunction generates a stand-alone MATLAB function for simulating any
trained neural network and preparing it for deployment in many scenarios:

* Document the input-output transforms of a neural network used as a calculation
template for manual reimplementations of the network

* Create a Simulink block using the MATLAB Function block

* Generate C/C++ code with MATLAB Coder™ codegen

* Generate efficient MEX-functions with MATLAB Coder codegen

* Generate stand-alone C executables with MATLAB Compiler™ mcc

* Generate C/C++ libraries with MATLAB Compiler mcc

+ Generate Excel® and .COM components with MATLAB Builder™ EX mcc options

* Generate Java components with MATLAB Builder JA mcc options

* Generate .NET components with MATLAB Builder NE mcc options

genFunction(net, 'path/name') takes a neural network and file path and produces a
standalone MATLAB function file 'name.m"'.

genFunction( , '"MatrixOnly', 'yes') overrides the default cell/matrix notation
and instead generates a function that uses only matrix arguments compatible with
MATLAB Coder tools. For static networks the matrix columns are interpreted as
independent samples. For dynamic networks the matrix columns are interpreted as a
series of time steps. The default value is 'no".

genFunction( , 'ShowLinks', 'no') disables the default behavior of displaying
links to generated help and source code. The default is 'yes"'.

Here a static network is trained and its outputs calculated.

[x,t] = house dataset;
houseNet = feedforwardnet(10);


https://www.mathworks.com/help/releases/R2013b/nnet/ref/genfunction.html

houseNet = train(houseNet,x,t);
y = houseNet(x);

A MATLAB function with the same interface as the neural network object is generated
and tested, and viewed.

genFunction(houseNet, 'houseFcn');
y2 = houseFcn(x);

accuracy2 = max(abs(y-y2))

edit houseFcn

The new function can be compiled with the MATLAB Compiler tools (license required) to a
shared/dynamically linked library with mcc.

mcc -W lib:1libHouse -T link:lib houseFcn

Next, another version of the MATLAB function is generated which supports only matrix
arguments (no cell arrays). This function is tested. Then it is used to generate a MEX-
function with the MATLAB Coder tool codegen (license required) which is also tested.

genFunction(houseNet, 'houseFcn', '"MatrixOnly', 'yes');
y3 = houseFcn(x);
accuracy3 = max(abs(y-y3))

Xx1Type = coder.typeof(double(0),[13 Inf]); % Coder type of input 1
codegen houseFcn.m -config:mex -o houseCodeGen -args {x1Type}

y4 = houseCodeGen(x);

accuracy4 = max(abs(y-y4))

Here, a dynamic network is trained and its outputs calculated.

[x,t] = maglev_dataset;

maglevNet = narxnet(1:2,1:2,10);
[X,X1i,Ai,T] = preparets(maglevNet,x,{},t);
maglevNet = train(maglevNet,X,T,Xi,Ai);
[y,xf,af] = maglevNet(X,Xi,Ai);

Next, a MATLAB function is generated and tested. The function is then used to create a
shared/dynamically linked library with mcc.

genFunction(maglevNet, 'maglevFcn');

[y2,xf,af] = maglevFcn(X,X1i,A1);

accuracy2 = max(abs(cell2mat(y)-cell2mat(y2)))
mcc -W lib:libMaglev -T link:lib maglevFcn
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Next, another version of the MATLAB function is generated which supports only matrix
arguments (no cell arrays). This function is tested. Then it is used to generate a MEX-
function with the MATLAB Coder tool codegen, and the result is also tested.

genFunction(maglevNet, 'maglevFcn', 'MatrixOnly', 'yes');

x1 = cell2mat(X(1,:)); % Convert each input to matrix

x2 = cell2mat(X(2,:));

xil = cell2mat(Xi(1,:)); % Convert each input state to matrix
xi2 = cell2mat(Xi(2,:));

[y3,xfl,xf2] = maglevFcn(x1l,x2,xil,xi2);

accuracy3 = max(abs(cell2mat(y)-y3))

x1Type coder.typeof(double(0),[1 Inf]); Coder type of input 1

x2Type coder.typeof(double(0),[1 Inf]); Coder type of input 2

xilType = coder.typeof(double(0),[1 2]); % Coder type of input 1 states

Xxi2Type = coder.typeof(double(0),[1 2]); % Coder type of input 2 states

codegen maglevFcn.m -config:mex -o maglevNetCodeGen -args {x1Type x2Type xilType xi2Type}
[y4,xfl,xf2] = maglevNetCodeGen(x1l,x2,xil,xi2);

dynamic_codegen_accuracy = max(abs(cell2mat(y)-y4))

%
]
%
]

Enhanced Tools

The function genFunction is introduced with a new panel in the tools nftool, nctool,
nprtool and ntstool.

Neural Network Fitting Tool (nftool)

d Deploy Solution

| -3\ Generate deployable versions of your trained neural network.

Application Deployment

Prepare neural network for deployment with MATLAB Compiler and Builder tools.

B Generate a stand-alone MATLAB function: (genFunction) | <\ MATLAB Function

Code Generation

Prepare neural network for deployment with MATLAB Coder tools.

B Generate a MATLAB function with matrix-only arguments (no cell array support): (genFunction) | <\ MATLAB Matrix-Only Function

Simulink Deploymen

t

Simulate neural network in Simulink or deploy with Simulink Coder tools.

B Generate a Simulink diagram: (gensim) | fg# Simulink Diagram
Graphics
B Generate a graphical diagram of the neural network: (network /view) | & Neural Network Diagram

© Deploy a neural network or click [Next].

| & Neural Network Start |
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|44 Welcome @ Back | @ cancel

The advanced scripts generated on the Save Results panel of each of these tools includes
an example of deploying networks with genFunction.


https://www.mathworks.com/help/releases/R2013b/nnet/ref/nftool.html
https://www.mathworks.com/help/releases/R2013b/nnet/ref/nctool.html
https://www.mathworks.com/help/releases/R2013b/nnet/ref/nprtool.html
https://www.mathworks.com/help/releases/R2013b/nnet/ref/ntstool.html

060 Neural Network Fitting Tool (nftool)

Save Results
/ Generate MATLAB scripts, save results and generate diagrams.

Generate Scripts
Recommended >> Use these scripts to reproduce results and solve similar problems.

» Generate a script to train and test a neural network as you just did with this tool: [ ) simple script

» Generate a script with additional options and example code: | L) Advanced Script |

Save Data to Workspace

& (¥ Save network to MATLAB network object named: net

&) ™ save performance and data set information to MATLAB struct named: info
il ™ save outputs to MATLAB matrix named: output
# ™ save errors to MATLAB matrix named: error
» Save inputs to MATLAB matrix named

@ [ save targets to MATLAB matrix named:

= Save ALL selected values above to MATLAB struct named

% save Results

@ save results and click [Finish].

@ Neural Network Start | | |44 Welcome 4 Back | (@ Finish

For more information, see Deploy Neural Network Functions.

Enhanced multi-timestep prediction for switching between
open-loop and closed-loop modes with NARX and NAR neural
networks

Dynamic networks with feedback, such as narxnet and narnet neural networks, can be
transformed between open-loop and closed-loop modes with the functions openloop and
closeloop. Closed-loop networks make multistep predictions. In other words, they
continue to predict when external feedback is missing, by using internal feedback.

It can be useful to simulate a trained neural network up the present with all the known
values of a time-series in open-loop mode, then switch to closed-loop mode to continue
the simulation for as many predictions into the future as are desired. It is now much
easier to do this.

Previously, openloop and closeloop transformed the neural network between those

two modes.
net = openloop(net)
net = closeloop(net)

12-5


https://www.mathworks.com/help/releases/R2013b/nnet/ug/deploy-neural-network-functions-and-objects.html
https://www.mathworks.com/help/releases/R2013b/nnet/ref/narxnet.html
https://www.mathworks.com/help/releases/R2013b/nnet/ref/narnet.html
https://www.mathworks.com/help/releases/R2013b/nnet/ref/openloop.html
https://www.mathworks.com/help/releases/R2013b/nnet/ref/closeloop.html

R2013b

12-6

This is still the case. However, these functions now also support the transformation of
input and layer delay state values between open- and closed-loop modes, making
switching between closed-loop to open-loop multistep prediction easier.

[net,xi,ail
[net,xi,ail

openloop(net,xi,ai);
closeloop(net,xi,ai);

Here, a neural network is trained to model the magnetic levitation system in default open-
loop mode.

[X,T] = maglev dataset;

net = narxnet(1:2,1:2,10);
[x,xi,ai,t] = preparets(net,X,{},T);
net = train(net,x,t,xi,ai);
view(net)

x(¥) Hidden

Output

Then closeloop is used to convert the network to closed-loop form for simulation.

netc = closeloop(net);

[x,xi,ai,t] = preparets(netc,X,{},T);
y = netc(x,xi,ai);

view(netc)

Hidden

Output

Now consider the case where you might have a record of the Maglev’s behavior for 20
time steps, but then want to predict ahead for 20 more time steps beyond that.

Define the first 20 steps of inputs and targets, representing the 20 time steps where the
output is known, as defined by the targets t. Then the next 20 time steps of the input are
defined, but you use the network to predict the 20 outputs using each of its predictions
feedback to help the network perform the next prediction.



x1 = x(1:20);
t1 = t(1:20);
X2 = x(21:40);

Then simulate the open-loop neural network on this data:

[x,xi,ai,t] = preparets(net,x1,{},tl);
[yl,xf,af] = net(x,xi,ai);

Now the final input and layer states returned by the network are converted to closed-loop
form along with the network. The final input states xf, and layer states af, of the open-
loop network become the initial input states xi, and layer states ai, of the closed-loop
network.

[netc,xi,ai] = closeloop(net,xf,af);

Typically, preparets is used to define initial input and layer states. Since these have
already been obtained from the end of the open-loop simulation, you do not need
preparets to continue with the 20 step predictions of the closed-loop network.

[y2,xf,af] = netc(x2,xi,ai);

Note that x2 can be set to different sequences of inputs to test different scenarios for
however many time steps you would like to make predictions. For example, to predict the
magnetic levitation system’s behavior if 10 random inputs were used:

x2 = num2cell(rand(1,10));
[y2,xf,af] = netc(x2,xi,ai);

For more information, see Multistep Neural Network Prediction.

Cross-entropy performance measure for enhanced pattern
recognition and classification accuracy

Networks created with patternnet now use the cross-entropy performance measure
(crossentropy), which frequently produces classifiers with fewer percentage

misclassifications than obtained using mean squared error.

See “Softmax transfer function in output layer gives consistent class probabilities for
pattern recognition and classification” on page 12-8.
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Softmax transfer function in output layer gives consistent
class probabilities for pattern recognition and classification

patternnet, which you use to create a neural network suitable for learning classification
problems, has been improved in two ways.

First, networks created with patternnet now use the cross-entropy performance
measure (crossentropy), which frequently produces classifiers with fewer percentage
misclassifications than obtained using mean squared error.

Second, patternnet returns networks that use the Soft Max transfer function
(softmax) for the output layer instead of the tansig sigmoid transfer function. softmax
results in output vectors normalized so they sum to 1.0, that can be interpreted as class
probabilities. (tansig also produces outputs in the 0 to 1 range, but they do not sum to
1.0 and have to be manually normalized before being treated as consistent class
probabilities.)

Here a patternnet with 10 neurons is created, its performance function and diagram
are displayed.

net = patternnet(10);
net.performFcn

ans =
crossentropy

view(net)

4\ Patten Recognition Neural Network (view) [

g s il il

The output layer’s transfer function is shown with the symbol for softmax.

Training the network takes advantage of the new crossentropy performance function.
Here the network is trained to classify iris flowers. The cross-entropy performance
algorithm is shown in the nntraintool algorithm section. Clicking the “Performance”
plot button shows how the network’s cross-entropy was minimized throughout the
training session.

[x,t] = iris dataset;
net = train(net,x,t);


https://www.mathworks.com/help/releases/R2013b/nnet/ref/patternnet.html
https://www.mathworks.com/help/releases/R2013b/nnet/ref/crossentropy.html
https://www.mathworks.com/help/releases/R2013b/nnet/ref/softmax.html
https://www.mathworks.com/help/releases/R2013b/nnet/ref/tansig.html
https://www.mathworks.com/help/releases/R2013b/nnet/ref/nntraintool.html

Simulating the network results in normalized output. Sample 150 is used to illustrate the
normalization of class membership likelihoods:

y = net(x(:,150))

y =
0.0001
0.0528
0.9471

sum(y)
1

The network output shows three membership probabilities with class three as by far the
most likely. Each probability value is between 0 and 1, and together they sum to 1
indicating the 100% probability that the input x(:,150) falls into one of the three
classes.

Compatibility Considerations

If a patternnet network is used to train on target data with only one row, the network’s
output transfer function will be changed to tansig and its outputs will continue to
operate as they did before the softmax enhancement. However, the 1-of-N notation for
targets is recommended even when there are only two classes. In that case the targets
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should have two rows, where each column has a 1 in the first or second row to indicate
class membership.

If you prefer the older patternnet of mean squared error performance and a sigmoid
output transfer function, you can specify this by setting those neural network object
properties. Here is how that is done for a patternnet with 10 neurons.

net = patternnet(10);
net.layers{2}.transferFcn = 'tansig';
net.performFcn = 'mse’;

Automated and periodic saving of intermediate results during
neural network training

Intermediate results can be periodically saved during neural network training to a .mat
file for recovery if the computer fails or the training process is killed. This helps protect
the values of long training runs, which if interrupted, would otherwise need to be
completely restarted.

This feature can be especially useful for long parallel training sessions that are more
likely to be interrupted by computing resource failures and which you can stop only with
a Ctrl+C break, because the nntraintool tool (with its Stop button) is not available
during parallel training.

Checkpoint saves are enabled with an optional 'CheckpointFile' training argument
followed by the checkpoint file’s name or path. If only a file name is specified, it is placed
in the current folder by default. The file must have the .mat file extension, but if it is not
specified it is automatically added. In this example, checkpoint saves are made to a file
called MyCheckpoint.mat in the current folder.

[x,t] = house dataset;
net = feedforwardnet(10);
net2 = train(net,x,t, 'CheckpointFile"', '"MyCheckpoint.mat"');

22-Mar-2013 04:49:05 First Checkpoint #1: /WorkingDir/MyCheckpoint.mat
22-Mar-2013 04:49:06 Final Checkpoint #2: /WorkingDir/MyCheckpoint.mat

By default, checkpoint saves occur at most once every 60 seconds. For the short training
example above this results in only two checkpoints, one at the beginning and one at the
end of training.


https://www.mathworks.com/help/releases/R2013b/nnet/ref/nntraintool.html

The optional training argument 'CheckpointDelay' changes the frequency of saves.
For example, here the minimum checkpoint delay is set to 10 seconds, for a time-series
problem where a neural network is trained to model a levitated magnet.

[x,t] = maglev dataset;

net = narxnet(1:2,1:2,10);

[X,Xi,Ai,T] = preparets(net,x,{},t);
net2 = train(net,X,T,Xi,Ai, 'CheckpointFile"', 'MyCheckpoint.mat', 'CheckpointDelay',10);

22-Mar-2013 04:59:28 First Checkpoint #1: /WorkingDir/MyCheckpoint.mat
22-Mar-2013 04:59:38 Write Checkpoint #2: /WorkingDir/MyCheckpoint.mat
22-Mar-2013 04:59:48 Write Checkpoint #3: /WorkingDir/MyCheckpoint.mat
22-Mar-2013 04:59:58 Write Checkpoint #4: /WorkingDir/MyCheckpoint.mat
22-Mar-2013 05:00:08 Write Checkpoint #5: /WorkingDir/MyCheckpoint.mat
22-Mar-2013 05:00:09 Final Checkpoint #6: /WorkingDir/MyCheckpoint.mat

After a computer failure or training interruption, the checkpoint structure containing the
best neural network obtained before the interruption and the training record can be
reloaded. In this case the stage field value is 'Final', indicating the last save was at
the final epoch, because training completed successfully. The first epoch checkpoint is
indicated by 'First', and intermediate checkpoints by 'Write'.

load('MyCheckpoint.mat"')

checkpoint =

file: '/WorkingDir/MyCheckpoint.mat'
time: [2013 3 22 5 0 9.0712]
number: 6
stage: 'Final'
net: [1x1 network]
tr: [1x1 struct]

Training can be resumed from the last checkpoint by reloading the dataset (if necessary),
then calling train with the recovered network.

net = checkpoint.net;

[x,t] = maglev_dataset;

load( 'MyCheckpoint.mat');

[X,Xi,Ai,T] = preparets(net,x,{},t);

net2 = train(net,X,T,Xi,Ai, 'CheckpointFile"', 'MyCheckpoint.mat', 'CheckpointDelay',10);

For more information, see Automatically Save Checkpoints During Neural Network
Training.

12-11


https://www.mathworks.com/help/releases/R2013b/nnet/ref/train.html
https://www.mathworks.com/help/releases/R2013b/nnet/ug/checkpoint-saves-during-neural-network-training.html
https://www.mathworks.com/help/releases/R2013b/nnet/ug/checkpoint-saves-during-neural-network-training.html

R2013b

12-12

Simpler Notation for Networks with Single Inputs and Outputs

The majority of neural networks have a single input and single output. You can now refer
to the input and output of such networks with the properties net.input and
net.output, without the need for cell array indices.

Here a feed-forward neural network is created and its input and output properties
examined.

net = feedforwardnet(10);
net.input
net.output

The net.inputs{1l} notation for the input and net.outputs{2} notation for the
second layer output continue to work. The cell array notation continues to be required for
networks with multiple inputs and outputs.

For more information, see Neural Network Object Properties.

Neural Network Efficiency Properties Are Now Obsolete

The neural network property net.efficiency is no longer shown when a network
object properties are displayed. The following line of code displays the properties of a
feed-forward network.

net = feedforwardnet(10)

Compatibility Considerations

The efficiency properties are still supported and do not yet generate warnings, so
backward compatibility is maintained. However the recommended way to use memory
reduction is no longer to set net.efficiency.memoryReduction. The recommended
notation since R2012b is to use optional training arguments:

[x,t] = vinyl dataset;
net feedforwardnet(10);
net train(net,x,t, 'Reduction',10);

Memory reduction is a way to trade off training time for lower memory requirements
when using Jacobian training such as trainlmand trainbr. The MemoryReduction
value indicates how many passes must be made to simulate the network and calculate its


https://www.mathworks.com/help/releases/R2013b/nnet/ug/neural-network-object-properties.html
https://www.mathworks.com/help/releases/R2013b/nnet/ref/trainlm.html
https://www.mathworks.com/help/releases/R2013b/nnet/ref/trainbr.html

gradients each epoch. The storage requirements go down as the memory reduction goes
up, although not necessarily proportionally. The default MemoryReduction is 1, which
indicates no memory reduction.
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Speed and memory efficiency enhancements for neural
network training and simulation

The neural network simulation, gradient, and Jacobian calculations are reimplemented
with native MEX-functions in Neural Network Toolbox Version 8.0. This results in faster
speeds, especially for small to medium network sizes, and for long time-series problems.

In Version 7, typical code for training and simulating a feed-forward neural network looks
like this:

[x,t] = house dataset;
net = feedforwardnet(10);
view(net)

net = train(net,x,t);

y = net(x);

Hidden Output
Input . Output
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In Version 8.0, the above code does not need to be changed, but calculations now happen
in compiled native MEX code.

Speedups of as much as 25% over Version 7.0 have been seen on a sample system (4-core
2.8 GHz Intel i7 with 12 GB RAM).

Note that speed improvements measured on the sample system might vary significantly
from improvements measured on other systems due to different chip speeds, memory
bandwidth, and other hardware and software variations.

The following code creates, views, and trains a dynamic NARX neural network model of a
maglev system in open-loop mode.

[x,t] = maglev_dataset;
net = narxnet(1:2,1:2,10);
view(net)

[X,Xi,A1,T] = preparets(net,x,{},t);
net = train(net,X,T,Xi,Ai);
y = net(X,Xi,Ai)
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The following code measures training speed over 10 training sessions, with the training
window disabled to avoid GUI timing interference.

On the sample system, this ran three times (3x) faster in Version 8.0 than in Version 7.0.

rng(0)
[x,t] = maglev dataset;
net = narxnet(1:2,1:2,10);
[X,Xi,A1,T] = preparets(net,x,{},t);
net.trainParam.showWindow = false;
tic
for i=1:10

net = train(net,X,T,Xi,Al);
end
toc
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The following code trains the network in closed-loop mode:

[x,t] = maglev_dataset;

net = narxnet(1:2,1:2,10);

net = closeloop(net);

view(net)

[X,Xi,Ai,T] = preparets(net,x,{},t);
net = train(net,X,T,Xi,Al);

For this case, and most closed-loop (recurrent) network training, Version 8.0 ran the code
more than one-hundred times (100x) faster than Version 7.0.

A dramatic example of where the improved closed loop training speed can help is when
training a NARX network model of a double pendulum. By initially training the network in
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open-loop mode, then in closed-loop mode with two time step sequences, then three time
step sequences, etc., a network has been trained that can simulate the system for 500
time steps in closed-loop mode. This corresponds to a 500 step ahead prediction.

I I I I I I I I
50 100 150 200 250 300 350 400 450 500
Time Steps

Exact Model
— NN Model

0 50 100 150 200 250 300 350 400 450 500
Time Steps

Because of the Version 8.0 MEX speedup, this only took a few hours, as opposed to the
months it would have taken in Version 7.0.

MEX code is also far more memory efficient. The amount of RAM used for intermediate
variables during training and simulation is now relatively constant, instead of growing
linearly with the number of samples. In other words, a problem with 10,000 samples
requires the same temporary storage as a problem with only 100 samples.
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This memory efficiency means larger problems can be trained on a single computer.

Compatibility Considerations

For very large networks, MEX code might fall back to MATLAB code. If this happens and
memory availability becomes an issue, use the ' reduction' option to implement
memory reduction. The reduction number indicates the number of passes to make
through the data for each calculation. Each pass calculates with a fraction of the data,
and the results are combined after all passes are complete. This trades off lower memory
requirements for longer calculation times.

net = train(net,x,t, 'reduction',10);
y = net(x, 'reduction',10);

The previous way to indicate memory reduction was to set the
net.efficiency.memoryReduction property before training:

net.efficiency.memoryReduction = N;

This continues to work in Version 8.0, but it is recommended that you update your code to
use the 'reduction' option for train and network simulation. Additional name-value
pair arguments are the standard way to indicate calculation options.

Speedup of training and simulation with multicore processors
and computer clusters using Parallel Computing Toolbox

Parallel Computing Toolbox allows Neural Network Toolbox simulation, and gradient and
Jacobian calculations to be parallelized across multiple CPU cores, reducing calculation
times. Parallelization splits the data among several workers. Results for the whole dataset
are combined after all workers have completed their calculations.
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Parallel Computing Toolbox

Note that, during training, the calculation of network outputs, performance, gradient, and
Jacobian calculations are parallelized, while the main training code remains on one
worker.

To train a network on the house dataset problem, introduced above, open a local
MATLAB pool of workers, then call train and sim with the new 'useParallel’ option
setto 'yes'.

matlabpool open
numWorkers = matlabpool('size')
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If calling matlabpool produces an error, it might be that Parallel Computing Toolbox is
not available.

[x,t] = house dataset;
net = feedforwardnet(10);
net = train(net,x,t, 'useParallel', 'yes');

y = sim(net, 'useParallel', 'yes');

On the sample system with a pool of four cores, typical speedups have been between 3x
and 3.7x. Using more than four cores might produce faster speeds. For more information,
see Parallel and GPU Computing.

GPU computing support for training and simulation on single
and multiple GPUs using Parallel Computing Toolbox

Parallel Computing Toolbox allows Neural Network Toolbox simulation and training to be
parallelized across the multiprocessors and cores of a graphics processing unit (GPU).

To train and simulate with a GPU set the 'useGPU' option to 'yes'. Use the gpuDevice
command to get information on your GPU.

gpulnfo = gpuDevice

If calling gpuDevice produces an error, it might be that Parallel Computing Toolbox is
not available.

Training on GPUs cannot be done with Jacobian algorithms, such as trainlm or
trainbr, but it can be done with any of the gradient algorithms such as trainscg. If
you do not change the training function, it will happen automatically.

[x,t] = house_dataset;
net = feedforwardnet(10);
net.trainFcn = 'trainscg';

net = train(net,x,t,'useGPU', 'yes');
y = sim(net, 'useGPU', 'yes');

Speedups on the sample system with an nVidia GTX 470 GPU card have been between 3x
and 7x, but might increase as GPUs continue to improve.

You can also use multiple GPUs. If you set both 'useParallel' and 'useGPU' to
'yes', any worker associated with a unique GPU will use that GPU, and other workers
will use their CPU core. It is not efficient to share GPUs between workers, as that would
require them to perform their calculations in sequence instead of in parallel.
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numWorkers = matlabpool('size')
numGPUs = gpuDeviceCount

[x,t] = house dataset;
net = feedforwardnet(10);
net.trainFcn = 'trainscg';

net = train(net,x,t, 'useParallel’', 'yes', 'useGPU', 'yes');
y = sim(net, 'useParallel’, 'yes', 'useGPU', 'yes');

Tests with three GPU workers and one CPU worker on the sample system have seen 3x or
higher speedup. Depending on the size of the problem, and how much it uses the capacity
of each GPU, adding GPUs might increase speed or might simply increase the size of
problem that can be run.

In some cases, training with both GPUs and CPUs can result in slower speeds than just
training with the GPUs, because the CPUs might not keep up with the GPUs. In this case,
set 'useGPU' to 'only' and only GPU workers will be used.

[x, ] = house dataset;

et = feedforwardnet(10);
net = train(net,x,t, 'useParallel', 'yes', 'useGPU', 'only');
y = sim(net, 'useParallel’, 'yes', 'useGPU', 'only');

For more information, see Parallel and GPU Computing.
Distributed training of large datasets on computer clusters
using MATLAB Distributed Computing Server

Besides allowing load balancing, Composite data also allows datasets too large to fit
within the RAM of a single computer to be distributed across the RAM of a cluster.

This is done by loading the Composite sequentially. For instance, here the sub-datasets
are loaded from files as they are distributed:

Xc = Composite;
Tc = Composite;
for i=1:10

data = load(['dataset' num2str(i)])
Xc{i} = data.x;
Tc{i} = data.t;
clear data
end


https://www.mathworks.com/help/releases/R2012b/nnet/ug/parallel-and-gpu-computing.html

This technique allows for training with datasets of any size, limited only by the available
RAM across an entire cluster.

For more information, see Parallel and GPU Computing.

Elliot sigmoid transfer function for faster simulation

The new transfer function elliotsig calculates its output without using the exp
function used by both tansig and logsig. This lets it execute much faster, especially on
deployment hardware that might either not support exp or which implements it with
software that takes many more execution cycles than simple arithmetic operations.

This example displays a plot of el1liotsig alongside tansig:

= -10:0.01:10;

1 elliotsig(n);

2 tansig(n);

h = plot(n,al,n,a2);

legend(h, 'ELLIOTSIG', 'TANSIG', 'Location', 'NorthWest')

n
a
a

elliotsig
tansig

To set up a neural network to use the elliotsig transfer function, change each tansig
layer’s transfer function with its transferFcn property. For instance, here a network
using elliotsig is created, viewed, trained, and simulated:

[x,t] = house dataset;
net = feedforwardnet(10);
view(net) % View TANSIG network
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Hidden Output
Input i Output
e g o
; o ;
10 0

net.layers{1l}.transferFcn = 'elliotsig';
view(net) % View ELLIOTSIG network

Hidden Output
Input Output
Cab- gl in
o w o1
10 0

net = train(net,x,t);
y = net(x)

The elliotsig transfer function might be even faster on an Intel® processor.

n = rand(1000,1000);

tic, for i=1:100, a elliotsig(n); end, elliotsigTime = toc
tic, for i=1:100, a tansig(n); end, tansigTime = toc
speedup = tansigTime / elliotsigTime

On one system the speedup was almost 3x.

However, because of the different shape, el1iotsig might not result in faster training
than tansig. It might require more training steps. For simulation, elliotsig is always
faster.

For more information, see Fast Elliot Sigmoid.

Faster training and simulation with computer clusters using
MATLAB Distributed Computing Server

If a MATLAB pool is opened using a cluster of computers, the previous parallel training
and simulations happen across the CPU cores and GPUs of all the computers in the pool.
For problems with hundreds of thousands or millions of samples, this might result in
considerable speedup.


https://www.mathworks.com/help/releases/R2012b/nnet/ug/speed-and-memory-optimizations.html#btldch1-1

Multicore Desktop Computer Cluster
with GPUs

Neural Network Toolbox MATLAB Distributed Computing Server

Parallel Computing Toolbox

MATLAB

For more information, see Parallel and GPU Computing.

Load balancing parallel calculations

When training and simulating a network using the 'useParallel’ option, the dataset is
automatically divided into equal parts across the workers. However, if different workers
have different speed and memory limitations, it can be helpful to adjust the amount of
data sent to each worker, so that the faster workers or those with more memory have
proportionally more data.
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This is done using the Parallel Computing Toolbox function Composite. Composite data is
data spread across a parallel pool of MATLAB workers.

For instance, if a parallel pool is open with four workers, data can be distributed as
follows:

[x,t] = house dataset;
Xc = Composite;
Tc = Composite;

Xc{1} = x(:, 1:150); % First 150 samples of x
Tc{1l} = x(:, 1:150); % First 150 samples of t
Xc{2} = x(:, 151:300); % Second 150 samples of x
Tc{2} = x(:, 151:300); % Second 150 samples of t
Xc{3} = x(:, 301:403); % Third 103 samples of x
Tc{3} = x(:, 301:403); % Third 103 samples of t
Xc{4} = x(:, 404:506); % Fourth 103 samples of x
Tc{4} = x(:, 404:506); % Fourth 103 samples of t

When you call train, the 'useParallel’ option is not needed, because train
automatically trains in parallel when using Composite data.

net = train(net,Xc,Tc);

CPU Usage History

If you want workers 1 and 2 to use GPU devices 1 and 2, while workers 3 and 4 use CPUs,
set up data for workers 1 and 2 using nndata2gpu inside an spmd clause.

spmd
if labindex <= 2
Xc = nndata2gpu(Xc);
Tc = nndata2gpu(Tc);
end
end

The function nndata2gpu takes a neural network matrix or cell array time series data
and converts it to a properly sized gpuArray on the worker’s GPU. This involves
transposing the matrices, padding the columns so their first elements are memory



aligned, and combining matrices, if the data was a cell array of matrices. To reverse
process outputs returned after simulation with gpuArray data, use gpu2nndata to
convert back to a regular matrix or a cell array of matrices.

As with 'useParallel’, the data type removes the need to specify 'useGPU"'. Training
and simulation automatically recognize that two of the workers have gpuArray data and
employ their GPUs accordingly.

net = train(net,Xc,Tc);

This way, any variation in speed or memory limitations between workers can be
accounted for by putting differing numbers of samples on those workers.

For more information, see Parallel and GPU Computing.

Summary and fallback rules of computing resources used
from train and sim

The convention used for computing resources requested by options 'useParallel' and
'useGPU' is that if the resource is available it will be used. If it is not, calculations still
occur accurately, but without that resource. Specifically:

1 If 'useParallel' issetto 'yes', but no MATLAB pool is open, then computing
occurs in the main MATLAB thread and is not distributed across workers.

2 If 'useGPU' is setto 'yes', but there is not a supported GPU device selected, then
computing occurs on the CPU.

3 If 'useParallel' and 'useGPU' are setto 'yes', each worker uses a GPU if it is
the first worker with a particular supported GPU selected, or uses a CPU core
otherwise.

4 If 'useParallel' issetto 'yes' and 'useGPU' is setto 'only’, then only the
first worker with a supported GPU is used, and other workers are not used. However,
if no GPUs are available, calculations revert to parallel CPU cores.

Set the 'showResources' option to 'yes' to check what resources are actually being
used, as opposed to requested for use, when training and simulating.

Example 14.1. Example: View computing resources

house dataset;

[x,t] =
= feedforwardnet(10);

net
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net2 = train(net,x,t, 'showResources', 'yes');
y = net2(x, 'showResources', 'yes');

Computing Resources:
MEX on PCWING64

net2 = train(net,x,t, 'useParallel', 'yes', 'showResources', 'yes');
y = net2(x, 'useParallel', 'yes', 'showResources', 'yes');

Computing Resources:
Worker 1 on Computerl, MEX on PCWIN64
Worker 2 on Computerl, MEX on PCWIN64
Worker 3 on Computerl, MEX on PCWIN64
Worker 4 on Computerl, MEX on PCWIN64

net2 = train(net,x,t, 'useGPU', 'yes', 'showResources', 'yes');
y = net2(x, 'useGPU"', 'yes"', 'showResources', 'yes');

Computing Resources:
GPU device 1, TypeOfCard

net2 = train(net,x,t, 'useParallel’', 'yes', 'useGPU', 'yes',...
'showResources', 'yes');
y = net2(x, 'useParallel', 'yes', 'useGPU', 'yes', 'showResources', 'yes');

Computing Resources:
Worker 1 on Computerl, GPU device 1, TypeOfCard
Worker 2 on Computerl, GPU device 2, TypeOfCard
Worker 3 on Computerl, MEX on PCWING4
Worker 4 on Computerl, MEX on PCWING4

net2 = train(net,x,t, 'useParallel', 'yes', 'useGPU', 'only"', ...
'showResources', 'yes');
y = net2(x, 'useParallel’', 'yes', 'useGPU', 'only', 'showResources', 'yes');

Computing Resources:
Worker 1 on Computerl, GPU device 1, TypeOfCard
Worker 2 on Computerl, GPU device 2, TypeOfCard

Updated code organization

The code organization for data processing, weight, net input, transfer, performance,
distance and training functions are updated. Custom functions of these kinds need to be
updated to the new organization.



In Version 8.0 the related functions for neural network processing are in package folders,
so each local function has its own file.

For instance, in Version 7.0 the function tansig contained a large switch statement and
several local functions. In Version 8.0 there is a root function tansig, along with several
package functions in the folder /toolbox/nnet/nnet/nntransfer/+tansig/.

+tansig/activeInputRange.m
+tansig/apply.m
+tansig/backprop.m
+tansig/da_dn.m
+tansig/discontinuity.m
+tansig/forwardprop.m
+tansig/isScalar.m
+tansig/name.m
+tansig/outputRange.m
+tansig/parameterInfo.m
+tansig/simulinkParameters.m
+tansig/type.m

Each transfer function has its own package with the same set of package functions. For
lists of processing, weight, net input, transfer, performance, and distance functions, each
of which has its own package, type the following:

help nnprocess
help nnweight

help nnnetinput
help nntransfer
help nnperformance
help nndistance

The calling interfaces for training functions are updated for the new calculation modes
and parallel support. Normally, training functions would not be called directly, but
indirectly by train, so this is unlikely to require any code changes.

Compatibility Considerations
Due to the new package organization for processing, weight, net input, transfer,

performance and distance functions, any custom functions of these types will need to be
updated to conform to this new package system before they will work with Version 8.0.
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See the main functions and package functions for mapminmax, dotprod, netsum,
tansig, mse, and dist for examples of this new organization. Any of these functions and
its package functions may be used as a template for new or updated custom functions.

Due to the new calling interfaces for training functions, any custom backpropagation
training function will need to be updated to work with Version 8.0. See trainlm and
trainscg for examples that can be used as templates for any new or updated custom
training function.
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New Neural Network Start GUI
The new nnstart function opens a GUI that provides links to new and existing Neural

Network Toolbox GUIs and other resources. The first panel of the GUI opens four "getting
started" wizards.

oMM Neural Network Start (nnstart)

Welcome to Neural Network Start
Learn how to solve problems with neural networks.

[ Getting Started Wizards «  More Information ]

Each of these wizards helps you solve a different kind of problem. The last
panel of each wizard generates a MATLAB script for solving the same or
similar problems. Example datasets are provided if you do not have data of
your own.

Input-output and curve fitting. ) (nftool)

| & Fitting Tool

Pattern recognition and classification. | @ Pattern Recognition Tool | (nprtool)

Clustering. | & Clustering Tool | (nctool)
Dynamic Time series. [ @ Time Series Tool | (ntstool)

The second panel provides links to other toolbox starting points.

anr Neural Network Start (nnstart)

ﬁg Welcome to Neural Network Start

Learn how to solve problems with neural networks.

! Getting Started Wizards - More information ]

These resources provide further information on solving problems with neural

networks.

Getting started documentation. Neural Network Guide
Neural network demonstrations. List of Demos
Neural network datasets. List of Datasets
Neural Network Design textbock and resources. Textbook Info
Neural network textbook demonstrations. List of Texbook Demos
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New Time Series GUI and Tools

The new ntstool function opens a wizard GUI that allows time series problems to be
solved with three kinds of neural networks: NARX networks (neural auto-regressive with
external input), NAR networks (neural auto-regressive), and time delay neural networks.

It follows a similar format to the neural fitting (nftool), clustering (nctool), and pattern
recognition (nprtool) tools.

Neural Network Time Series Tool (ntstool)

5) Input (NARX)
x.

P61 vo-reensan
e

O Nonlinear Autoregressive (NAR)

Prcict s (0 iven d past s of 0.

fUT 8] 0= teDrad
.

of y(© will not b

© _(»D:u 10 = Dt

@ Choose s probiem, then clck ext]

@ Neural Nevorkstare| {4 welcome

Network diagrams shown in the Neural Time Series Tool, Neural Training Tool, and with
the view(net) command, have been improved to show tap delay lines in front of
weights, the sizes of inputs, layers and outputs, and the time relationship of inputs and

outputs. Open loop feedback outputs and inputs are indicated with matching tab and
indents in their respective blocks.

ann Neural Network Time Series Tool (ntstool)

Network Architecture
Choose the number of neurons and input/feedback delays.

Architecture Choic

Define a NARX neural network. ~(narxnet)

Number of Hidden Neurons: 20

Number of delays d

Problem definition:

DT B
X® Hidden Layer with Delays
: o
bsdsa i vo
;
ool o S
G w M) EETS
.
3 20

(@ sack) (B vot) (@ cancel]
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The Save Results panel of the Neural Network Time Series Tool allows you to generate
both a Simple Script, which demonstrates how to get the same results as were obtained
with the wizard, and an Advanced Script, which provides an introduction to more
advanced techniques.

fann Neural Network Time Series Tool (ntstool)
2 Save Results
CR e warias s, sove rsits s g drams.

Recommended >> Generate scripts to reproduce results and solve similar problems: ) simple script (£ Advanced scrpt.
save

@ net

=] to MATLAB struct named: nf

L |

& error

B [ Save inputs to MATLAB mat nput

B [ Save feedback to MATLAB matrix named: feedback

) () Save ALL selected values above to MATLAB struct named: esults

[
: g

ulink diagram of the network: (@

@ save resuls and clck [Finish

@ NeuralNeworksuare| K welcome @ k) | @ vea | (@ rmsh
L XeY:) Editor - untitled

File Edit Text Go Cell Tools Debug Desktop Window Help

x » 2 D@ > BARE B suk Bse ¢ ERNTNEINEN = |

38 - + [11] x ry
o Tth External Tnput with a WARK Neural W=l

= 70/100;
15/100;

io = 15/100;

The Train Network panel of the Neural Network Time Series Tool introduces four new
plots, which you can also access from the Network Training Tool and the command line.

The error histogram of any static or dynamic network can be plotted.

plotresponse(errors)
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ano Error Histogram

Error Histogram with 20 Bins
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[ Test
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The dynamic response can be plotted, with colors indicating how targets were assigned to
training, validation and test sets across timesteps. (Dividing data by timesteps and other
criteria, in addition to by sample, is a new feature described in “New Time Series
Validation” on page 18-9.)

plotresponse(targets,outputs)

ano Time-Series Respense (plotresponse)

Response of Qutput Element 1 for Time-Series 1

* Training Targets
Training Outputs
+ Validation Targets

4

a8 + Validation Outputs
T *  Test Targets
g B + TestOuplts
L Errors
T Response
5 12 — V
]
8 1 B
=]
(=]
LK
06
o4l 1 1 1 f 1 1 1 1
L : : T
P
2 N i
w g " o veantasaatlonnes

The autocorrelation of error across varying lag times can be plotted.

ploterrcorr(errors)
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Error Autocorrelation (ploterrcorr)

x10? Autecerrelation of Error 1
12FT T T T T

omelations
ero Cormelation
e Gonfigence Limit

Correlation
IS
T
L

The input-to-error correlation can also be plotted for varying lags.

plotinerrcorr(inputs,errors)

8Ne Input-Error Cross-correlation (plotinerrcorr)

c10® Cotrelation between Input 1 and Error 1 = Target 1 - Qutput 1
T T T T T T
1z I Corrslations

Zero Comrelation
1 Confidence Limit

2

I3

|

il Al
. | | I
2

:

]

Correlation

Simpler time series neural network creation is provided for NARX and time-delay
networks, and a new function creates NAR networks. All the network diagrams shown
here are generated with the command view(net).

net = narxnet(inputDelays, feedbackDelays, hiddenSizes,
feedbackMode, trainingFcn

net = narnet(feedbackDelays, hiddenSizes, feedbackMode,
trainingFcn)

net = timedelaynet(inputDelays, hiddenSizes, trainingFcn)


https://www.mathworks.com/help/releases/R2012a/toolbox/nnet/ref/view.html

ane Time Delay Neural Network (view)

Hidden Output

L L gl i

Several new data sets provide sample problems that can be solved with these networks.
These data sets are also available within the ntstool GUI and the command line.

[x, t] = simpleseries dataset;
[x, t] = simplenarx_dataset;
[x, t] = exchanger dataset;
[x, t] = maglev _dataset;

[x, t] = ph_dataset;

[x, t] = pollution dataset;
[x, t] = refmodel dataset;

[x, t] = robotarm dataset;

[x, t] = valve dataset;

The preparets function formats input and target time series for time series networks, by
shifting the inputs and targets as needed to fill initial input and layer delay states. This
function simplifies what is normally a tricky data preparation step that must be
customized for details of each kind of network and its number of delays.

[x, t] = simplenarx_dataset;

net = narxnet(1l:2, 1:2, 10);

[xs, xi, ai, ts] = preparets(net, x, {}, t);
net = train(net, xs, ts, xi, ai);

y = net(xs, xi, ai)

The output-to-input feedback of NARX and NAR networks (or custom time series network
with output-to-input feedback loops) can be converted between open- and closed-loop
modes using the two new functions closeloop and openloop.

net = narxnet(1:2, 1:2, 10);
net = closeloop(net)
net = openloop(net)

18-7


https://www.mathworks.com/help/releases/R2012a/toolbox/nnet/ref/ntstool.html
https://www.mathworks.com/help/releases/R2012a/toolbox/nnet/ref/preparets.html
https://www.mathworks.com/help/releases/R2012a/toolbox/nnet/ref/closeloop.html
https://www.mathworks.com/help/releases/R2012a/toolbox/nnet/ref/openloop.html

R2010b

NAR Neural Network (view)

Hidden Output

The total delay through a network can be adjusted with the two new functions
removedelay and adddelay. Removing a delay from a NARX network which has a
minimum input and feedback delay of 1, so that it now has a minimum delay of 0, allows
the network to predict the next target value a timestep ahead of when that value is
expected.

net
net

removedelay (net)
adddelay(net)

ann NAR Neural Network (view)

Hidden Output

The new function catsamples allows you to combine multiple time series into a single
neural network data variable. This is useful for creating input and target data from
multiple input and target time series.

catsamples(x1l, x2, x3);
catsamples(tl, t2, t3);

X =
t —3
In the case where the time series are not the same length, the shorter time series can be

padded with NaN values. This will indicate “don't care” or equivalently “don't know”
input and targets, and will have no effect during simulation and training.

X
t

catsamples(x1l, x2, x3, 'pad')
catsamples(tl, t2, t3, 'pad')

Alternatively, the shorter series can be padded with any other value, such as zero.
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x = catsamples(xl, x2, x3, 'pad', 0)

There are many other new and updated functions for handling neural network data, which
make it easier to manipulate neural network time series data.

help nndatafun

New Time Series Validation

Normally during training, a data set's targets are divided up by sample into training,
validation and test sets. This allows the validation set to stop training at a point of optimal
generalization, and the test set to provide an independent measure of the network's
accuracy. This mode of dividing up data is now indicated with a new property:

net.divideMode = 'sample'

However, many time series problems involve only a single time series. In order to support
validation you can set the new property to divide data up by timestep. This is the default
setting for NARXNET and other time series networks.

net.divideMode = 'time’

This property can be set manually, and can be used to specify dividing up of targets
across both sample and timestep, by all target values (i.e., across sample, timestep, and
output element), or not to perform data division at all.

net.divideMode = 'sampletime'
net.divideMode = 'all'
net.divideMode = 'none’

New Time Series Properties

Time series feedback can also be controlled manually with new network properties that
represent output-to-input feedback in open- or closed-loop modes. For open-loop feedback
from an output from layer i back to input j, set these properties as follows:

net.inputs{j}.feedbackOutput = i
net.outputs{i}.feedbackInput = j
net.outputs{i}.feedbackMode = 'open'

When the feedback mode of the output is set to ' closed', the properties change to
reflect that the output-to-input feedback is now implemented with internal feedback by
removing input j from the network, and having output properties as follows:
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net.outputs{i}.feedbackInput = [];
net.outputs{i}.feedbackMode = 'closed'

Another output property keeps track of the proper closed-loop delay, when a network is in
open-loop mode. Normally this property has this setting:

net.outputs{i}. feedbackDelay = 0

However, if a delay is removed from the network, it is updated to 1, to indicate that the
network's output is actually one timestep ahead of its inputs, and must be delayed by 1 if
it is to be converted to closed-loop form.

net.outputs{i}.feedbackDelay = 1

New Flexible Error Weighting and Performance

Performance functions have a new argument list that supports error weights for
indicating which target values are more important than others. The train function also
supports error weights.

net = train(net, x, t, xi, ai, ew)
perf = mse(net, x, t, ew)

You can define error weights by sample, output element, time step, or network output:

ew = [1.0 0.5 0.7 0.2]; % Weighting errors across 4 samples
ew = [0.1; 0.5; 1.0]; % . across 3 output elements

ew = {0.1 0.2 0.3 0.5 1.0}; % . across 5 timesteps

ew = {1.0; 0.5}; % . across 2 network outputs

These can also be defined across any combination. For example, weighting error across
two time series (i.e., two samples) over four timesteps:

ew = {[0.5 0.4], [0.3 0.5], [1.0 1.0], [0.7 O@.5]};

In the general case, error weights can have exactly the same dimension as targets, where
each target has an associated error weight.

Some performance functions are now obsolete, as their functionality has been
implemented as options within the four remaining performance functions: mse, mae, sse,
and sae.

The regularization implemented in msereg and msnereg is now implemented with a
performance property supported by all four remaining performance functions.


https://www.mathworks.com/help/releases/R2012a/toolbox/nnet/ref/train.html
https://www.mathworks.com/help/releases/R2012a/toolbox/nnet/ref/mse.html
https://www.mathworks.com/help/releases/R2012a/toolbox/nnet/ref/mae.html
https://www.mathworks.com/help/releases/R2012a/toolbox/nnet/ref/sse.html
https://www.mathworks.com/help/releases/R2012a/toolbox/nnet/ref/sae.html

% Any value between the default 0 and 1.
net.performParam.regularization

The error normalization implemented in msne and msnereg is now implemented with a
normalization property.

% Either 'normalized', 'percent', or the default 'none'.
net.performParam.normalization

A third performance parameter indicates whether error weighting is applied to square
errors (the default for mse and sse) or the absolute errors (mae and sae).

net.performParam.squaredWeighting % true or false

Compatibility Considerations

The old performance functions and old performance arguments lists continue to work as
before, but are no longer recommended.

New Real Time Workshop and Improved Simulink Support

Neural network Simulink blocks now compile with Real Time Workshop® and are
compatible with Rapid Accelerator mode.

8ne imulink Library Browser
File Edit View Help
0 & » [Entersearch.. |v] #& [
Libraries Library: Neural Network... Search Result... Most Frequently Use. ...

& Gauges Blockset

- Control
& Image Acquisition Toolbox Systems

& Instrument Control Toolbox

¥ Model Predictive Control T... Processing Transfer
¥ Neural Network Toolbox D Functions Functions

Net Input
Functions

| OPC Toolbox Weight
| Physical Modeling Develo... \j Functions
¥ RF Blockset

¥ Real-Time Windows Target
¥ Real-Time Workshop
Showing: Neural Network Toolbox g

gensim has new options for generating neural network systems in Simulink.

Name - the system name
SampleTime - the sample time
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InputMode - either port, workspace, constant, or none.
OutputMode - either display, port, workspace, scope, or none
SolverMode - either default or discrete

For instance, here a NARX network is created and set up in MATLAB to use workspace
inputs and outputs.

[x, t] = simplenarx dataset;

net = narxnet(1l:2, 1:2, 10);

[xs, xi, ai, ts] = preparets(net, x, {}, t);

net = train(net, xs, ts, xi, ai);

net = closeloop(net);

[sysName, netName] = gensim(net, 'InputMode', 'workspace',
'OutputMode', 'workspace', 'SolverMode', 'discrete');

. NaNe) [\ untitled *

File Edit Miews Simulation Format Tools  Help

WS =z | =» I3

wl

MARR Meural MNetwoark

7

Simulink neural network blocks now allow initial conditions for input and layer delays to
be set directly by double-clicking the neural network block. setsiminit and
getsiminit provide command-line control for setting and getting input and layer delays
for a neural network Simulink block.

setsiminit(sysName, netName, net, xi, ai);

New Documentation Organization and Hyperlinks

The User's Guide has been rearranged to better focus on the workflow of practical
applications. The Getting Started section has been expanded.


https://www.mathworks.com/help/releases/R2012a/toolbox/nnet/ref/setsiminit.html
https://www.mathworks.com/help/releases/R2012a/toolbox/nnet/ref/getsiminit.html

References to functions throughout the online documentation and command-line help now
link directly to their function pages.

help feedforwardnet

The command-line output of neural network objects now contains hyperlinks to
documentation. For instance, here a feed-forward network is created and displayed. Its
command-line output contains links to network properties, function reference pages, and
parameter information.

net = feedforwardnet(10);

Subobjects of the network, such as inputs, layers, outputs, biases, weights, and parameter
lists also display with links.

net.inputs{1l}
net.layers{1l}
net.outputs{2}
net.biases{1l}
net.inputWeights{1l, 1}
net.trainParam

The training tool nntraintool and the wizard GUIs nftool, nprtool, nctool, and
ntstool, provide numerous hyperlinks to documentation.

New Derivative Functions and Property

New functions give convenient access to error gradient (of performance with respect to
weights and biases) and Jacobian (of error with respect to weights and biases) calculated
by various means.

staticderiv - Backpropagation for static networks

bttderiv - Backpropagation through time

fpderiv - Forward propagation

num2deriv - Two-point numerical approximation

numSderiv - Five-point numerical approximation

defaultderiv - Chooses recommended derivative function for the network

For instance, here you can calculate the error gradient for a newly created and
configured feedforward network.

net = feedforwardnet(10);
[x, t] = simplefit dataset;
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net = configure(net, x, t);
d = staticderiv('dperf dwb', net, x, t)

Improved Network Creation

New network creation functions have clearer names, no longer need example data, and
have argument lists reduced to only the arguments recommended for most applications.
All arguments have defaults, so you can create simple networks by calling network
functions without any arguments. New networks are also more memory efficient, as they
no longer need to store sample input and target data for proper configuration of input and
output processing settings.

% New function
net = feedforwardnet(hiddenSizes, trainingFcn)

% 0ld function

net = newff(x,t,hiddenSizes, transferFcns, trainingFcn,
learningFcn, performanceFcn, inputProcessingFcns,
outputProcessingFcns, dataDivisionFcn)

The new functions (and the old functions they replace) are:

feedforwardnet (newff)
cascadeforwardnet (newcf)
competlayer (newc)
distdelaynet (newdtdnn)
elmannet (newelm)

fitnet (newfit)

layrecnet (newlrn)
linearlayer (newlin)
lvgnet (newlvq)

narxnet (newnarx, newnarxsp)
patternnet (newpr)
perceptron (newp)
selforgmap (newsom)
timedelaynet (newtdnn)

The network's inputs and outputs are created with size zero, then configured for data
when train is called or by optionally calling the new function configure.

net = configure(net, x, t)
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Unconfigured networks can be saved and reused by configuring them for many different
problems. unconfigure sets a configured network's inputs and outputs to zero, in a
network which can later be configured for other data.

net = unconfigure(net)

Compatibility Considerations

Old functions continue working as before, but are no longer recommended.

Improved GUIs

The neural fitting nftool, pattern recognition nprtool, and clustering nctool GUIs
have been updated with links back to the nnstart GUI. They give the option of
generating either simple or advanced scripts in their last panel. They also confirm with
you when closing, if a script has not been generated, or the results not yet saved.

Improved Memory Efficiency

Memory reduction, the technique of splitting calculations up in time to reduce memory
requirements, has been implemented across all training algorithms for both gradient and
network simulation calculations. Previously it was only supported for gradient
calculations with trainlm and trainbr.

To set the memory reduction level, use this new property. The default is 1, for no memory
reduction. Setting it to 2 or higher splits the calculations into that many parts.

net.efficiency.memoryReduction

Compatibility Considerations

The trainlm and trainbr training parameter MEM REDUC is now obsolete.
References to it will need to be updated. Code referring to it will generate a warning.

Improved Data Sets

All data sets in the toolbox now have help, including example solutions, and can be
accessed as functions:
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help simplefit dataset
[x, t] = simplefit dataset;

See help for a full list of sample data sets:

help nndatasets

Updated Argument Lists

The argument lists for the following types of functions, which are not generally called
directly, have been updated.

The argument list for training functions, such as trainlm, traingd, etc., have been
updated to match train. The argument list for the adapt function adaptwb has been
updated. The argument list for the layer and network initialization functions, initlay,
initnw, and initwb have been updated.

Compatibility Considerations

Any custom functions of these types, or code which calls these functions manually, will
need to be updated.


https://www.mathworks.com/help/releases/R2012a/toolbox/nnet/ref/trainlm.html
https://www.mathworks.com/help/releases/R2012a/toolbox/nnet/ref/traingd.html
https://www.mathworks.com/help/releases/R2012a/toolbox/nnet/ref/train.html
https://www.mathworks.com/help/releases/R2012a/toolbox/nnet/ref/adaptwb.html
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New Training GUI with Animated Plotting Functions

Training networks with the train function now automatically opens a window that shows
the network diagram, training algorithm names, and training status information.

The window also includes buttons for plots associated with the network being trained.
These buttons launch the plots during or after training. If the plots are open during
training, they update every epoch, resulting in animations that make understanding
network performance much easier.

The training window can be opened and closed at the command line as follows:

nntraintool
nntraintool('close')

Two plotting functions associated with the most networks are:

* plotperform—Plot performance.
+ plottrainstate—Plot training state.

Compatibility Considerations

To turn off the new training window and display command-line output (which was the
default display in previous versions), use these two training parameters:

net.trainParam.showWindow = false;
net.trainParam.showCommandLine = true;

New Pattern Recognition Network, Plotting, and Analysis GUI

The nprtool function opens a GUI wizard that guides you to a neural network solution
for pattern recognition problems. Users can define their own problems or use one of the
new data sets provided.

The newpr function creates a pattern recognition network at the command line. Pattern
recognition networks are feed-forward networks that solve problems with Boolean or 1-of-
N targets and have confusion (plotconfusion) and receiver operating characteristic
(plotroc) plots associated with them.


https://www.mathworks.com/help/releases/R2012a/toolbox/nnet/ref/train.html
https://www.mathworks.com/help/releases/R2012a/toolbox/nnet/ref/plotperform.html
https://www.mathworks.com/help/releases/R2012a/toolbox/nnet/ref/plottrainstate.html
https://www.mathworks.com/help/releases/R2012a/toolbox/nnet/ref/nprtool.html
https://www.mathworks.com/help/releases/R2012a/toolbox/nnet/ref/plotconfusion.html
https://www.mathworks.com/help/releases/R2012a/toolbox/nnet/ref/plotroc.html

The new confusion function calculates the true/false, positive/negative results from
comparing network output classification with target classes.

New Clustering Training, Initialization, and Plotting GUI

The nctool function opens a GUI wizard that guides you to a self-organizing map
solution for clustering problems. Users can define their own problem or use one of the
new data sets provided.

The initsompc function initializes the weights of self-organizing map layers to
accelerate training. The learnsomb function implements batch training of SOMs that is
orders of magnitude faster than incremental training. The newsom function now creates a
SOM network using these faster algorithms.

Several new plotting functions are associated with self-organizing maps:

* plotsomhits—Plot self-organizing map input hits.

* plotsomnc—Plot self-organizing map neighbor connections.

* plotsomnd—Plot self-organizing map neighbor distances.

* plotsomplanes—Plot self-organizing map input weight planes.
* plotsompos—Plot self-organizing map weight positions.

* plotsomtop—Plot self-organizing map topology.

Compatibility Considerations

You can call the newsom function using conventions from earlier versions of the toolbox,
but using its new calling conventions gives you faster results.

New Network Diagram Viewer and Improved Diagram Look

The new neural network diagrams support arbitrarily connected network architectures
and have an improved layout. Their visual clarity has been improved with color and
shading.

Network diagrams appear in all the Neural Network Toolbox graphical interfaces. In
addition, you can open a network diagram viewer of any network from the command line

by typing
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view(net)

New Fitting Network, Plots and Updated Fitting GUI

The newfit function creates a fitting network that consists of a feed-forward
backpropagation network with the fitting plot (plotfit) associated with it.

The nftool wizard has been updated to use newfit, for simpler operation, to include
the new network diagrams, and to include sample data sets. It now allows a Simulink
block version of the trained network to be generated from the final results panel.

Compatibility Considerations

The code generated by nftool is different the code generated in previous versions.
However, the code generated by earlier versions still operates correctly.


https://www.mathworks.com/help/releases/R2012a/toolbox/nnet/ref/plotfit.html
https://www.mathworks.com/help/releases/R2012a/toolbox/nnet/ref/nftool.html
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Simplified Syntax for Network-Creation Functions

The following network-creation functions have new input arguments to simplify the
network creation process:

* newcf

* newff

* newdtdnn

* newelm
* newfftd
* newlin
* newlrn
* newnarx

* newnarxsp
For detailed information about each function, see the corresponding reference pages.

Changes to the syntax of network-creation functions have the following benefits:

* You can now specify input and target data values directly. In the previous release, you
specified input ranges and the size of the output layer instead.

* The new syntax automates preprocessing, data division, and postprocessing of data.

For example, to create a two-layer feed-forward network with 20 neurons in its hidden
layer for a given a matrix of input vectors p and target vectors t, you can now use newff
with the following arguments:

net = newff(p,t,20);

This command also sets properties of the network such that the functions sim and train
automatically preprocess inputs and targets, and postprocess outputs.

In the previous release, you had to use the following three commands to create the same
network:

minmax(p);
size(t,1);
t = newff(pr,[20 s2]);

pr
s2
ne


https://www.mathworks.com/help/releases/R2012a/toolbox/nnet/ref/sim.html
https://www.mathworks.com/help/releases/R2012a/toolbox/nnet/ref/train.html

Compatibility Considerations

Your existing code still works but might produce a warning that you are using obsolete
syntax.

Automated Data Preprocessing and Postprocessing During
Network Creation

Automated data preprocessing and postprocessing occur during network creation in the
Network/Data Manager GUI (nntool), Neural Network Fitting Tool GUI (nftool), and at
the command line.

At the command line, the new syntax for using network-creation functions, automates
preprocessing, postprocessing, and data-division operations.

For example, the following code returns a network that automatically preprocesses the
inputs and targets and postprocesses the outputs:

net newff(p,t,20);
net train(net,p,t);
y = sim(net,p);

To create the same network in a previous release, you used the following longer code:

[pl,psl] = removeconstantrows(p);
[p2,ps2] = mapminmax(pl);
[tl,ts1l] = mapminmax(t);

pr = minmax(p2);

s2 = size(tl,1);

net newff(pr,[20 s2]1);

net train(net,p2,tl);

yl = sim(net,p2)

y = mapminmax('reverse',yl,tsl);

Default Processing Settings

The default input processFcns functions returned with a new network are, as follows:

net.inputs{l}.processFcns = ...
{'fixunknowns', 'removeconstantrows', 'mapminmax'}

These three processing functions perform the following operations, respectively:
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+ fixunknowns—Encode unknown or missing values (represented by NaN) using
numerical values that the network can accept.

* removeconstantrows—Remove rows that have constant values across all samples.
* mapminmax—Map the minimum and maximum values of each row to the interval [ -1
1].

The elements of processParams are set to the default values of the fixunknowns,
removeconstantrows, and mapminmax functions.

The default output processFcns functions returned with a new network include the
following:

net.outputs{2}.processFcns = {'removeconstantrows', 'mapminmax'}

These defaults process outputs by removing rows with constant values across all samples
and mapping the values to the interval [-1 1].

sim and train automatically process inputs and targets using the input and output
processing functions, respectively. sim and train also reverse-process network outputs
as specified by the output processing functions.

For more information about processing input, target, and output data, see “Multilayer
Networks and Backpropagation Training” in the Neural Network Toolbox User's Guide.

Changing Default Input Processing Functions

You can change the default processing functions either by specifying optional processing
function arguments with the network-creation function, or by changing the value of
processFcns after creating your network.

You can also modify the default parameters for each processing function by changing the
elements of the processParams properties.

After you create a network object (net), you can use the following input properties to
view and modify the automatic processing settings:

* net.inputs{1l}.exampleInput—Matrix of example input vectors
* net.inputs{l}.processFcns—Cell array of processing function names
* net.inputs{l}.processParams—Cell array of processing parameters

The following input properties are automatically set and you cannot change them:


https://www.mathworks.com/help/releases/R2012a/toolbox/nnet/ref/fixunknowns.html
https://www.mathworks.com/help/releases/R2012a/toolbox/nnet/ref/removeconstantrows.html
https://www.mathworks.com/help/releases/R2012a/toolbox/nnet/ref/mapminmax.html
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* net.inputs{l}.processSettings—Cell array of processing settings

* net.inputs{l}.processedRange—Ranges of example input vectors after
processing

* net.inputs{l}.processedSize—Number of input elements after processing
Changing Default Output Processing Functions

After you create a network object (net), you can use the following output properties to
view and modify the automatic processing settings:

* net.outputs{2}.exampleOutput—Matrix of example output vectors

* net.outputs{2}.processFcns—Cell array of processing function names

* net.outputs{2}.processParams—Cell array of processing parameters

Note These output properties require a network that has the output layer as the
second layer.

The following new output properties are automatically set and you cannot change them:

* net.outputs{2}.processSettings—Cell array of processing settings

* net.outputs{2}.processedRange—Ranges of example output vectors after
processing

* net.outputs{2}.processedSize—Number of input elements after processing

Automated Data Division During Network Creation

When training with supervised training functions, such as the Levenberg-Marquardt
backpropagation (the default for feed-forward networks), you can supply three sets of
input and target data. The first data set trains the network, the second data set stops
training when generalization begins to suffer, and the third data set provides an
independent measure of network performance.

Automated data division occurs during network creation in the Network/Data Manager
GUI, Neural Network Fitting Tool GUI, and at the command line.

At the command line, to create and train a network with early stopping that uses 20% of
samples for validation and 20% for testing, you can use the following code:
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net
net

newff(p,t,20);
train(net,p,t);

Previously, you entered the following code to accomplish the same result:

pr minmax(p);

s2 size(t,1);

net = newff(pr,[20 s2]);

[trainV,validateV, testV] = dividevec(p,t,0.2,0.2);

[net,tr] = train(net,trainV.P,trainV.T,[],[],validateV,testV);

For more information about data division, see “Multilayer Networks and Backpropagation
Training” in the Neural Network Toolbox User's Guide.

New Data Division Functions
The following are new data division functions:

* dividerand—Divide vectors using random indices.

* divideblock—Divide vectors in three blocks of indices.

* divideint—Divide vectors with interleaved indices.

* divideind—Divide vectors according to supplied indices.

Default Data Division Settings
Network creation functions return the following default data division properties:

* net.divideFcn = 'dividerand'

* net.divedeParam.trainRatio = 0.6;

* net.divideParam.valRatio = 0.2;

e net.divideParam.testRatio = 0.2;

Calling train on the network object net divided the set of input and target vectors into

three sets, such that 60% of the vectors are used for training, 20% for validation, and
20% for independent testing.

Changing Default Data Division Settings

You can override default data division settings by either supplying the optional data
division argument for a network-creation function, or by changing the corresponding
property values after creating the network.
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After creating a network, you can view and modify the data division behavior using the
following new network properties:

* net.divideFcn—Name of the division function
* net.divideParam—Parameters for the division function

New Simulink Blocks for Data Preprocessing

New blocks for data processing and reverse processing are available. For more
information, see “Processing Blocks” in the Neural Network Toolbox User's Guide.

The function gensim now generates neural networks in Simulink that use the new
processing blocks.

Properties for Targets Now Defined by Properties for Outputs

The properties for targets are now defined by the properties for outputs. Use the
following properties to get and set the output and target properties of your network:

* net.numOutputs—The number of outputs and targets
* net.outputConnect—Indicates which layers have outputs and targets
* net.outputs—Cell array of output subobjects defining each output and its target

Compatibility Considerations

Several properties are now obsolete, as described in the following table. Use the new
properties instead.

Recommended Property Obsolete Property
net.numOutputs net.numTargets
net.outputConnect net.targetConnect
net.outputs net.targets
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Dynamic Neural Networks
Version 5.0 now supports these types of dynamic neural networks:
Time-Delay Neural Network

Both focused and distributed time-delay neural networks are now supported. Continue to
use the newfftd function to create focused time-delay neural networks. To create
distributed time-delay neural networks, use the newdtdnn function.

Nonlinear Autoregressive Network (NARX)

To create parallel NARX configurations, use the newnarx function. To create series-
parallel NARX networks, use the newnarxsp function. The sp2narx function lets you
convert NARX networks from series-parallel to parallel configuration, which is useful for
training.

Layer Recurrent Network (LRN)

Use the newlrn function to create LRN networks. LRN networks are useful for solving
some of the more difficult problems in filtering and modeling applications.

Custom Networks

The training functions in Neural Network Toolbox are enhanced to let you train arbitrary
custom dynamic networks that model complex dynamic systems. For more information
about working with these networks, see the Neural Network Toolbox documentation.

Wizard for Fitting Data

The new Neural Network Fitting Tool (nftool) is now available to fit your data using a
neural network. The Neural Network Fitting Tool is designed as a wizard and walks you
through the data-fitting process step by step.

To open the Neural Network Fitting Tool, type the following at the MATLAB prompt:

nftool

Data Preprocessing and Postprocessing

Version 5.0 provides the following new data preprocessing and postprocessing
functionality:


https://www.mathworks.com/help/releases/R2012a/toolbox/nnet/ref/nftool.html

dividevec Automatically Splits Data

The dividevec function facilitates dividing your data into three distinct sets to be used

for training, cross validation, and testing, respectively. Previously, you had to split the

data manually.

fixunknowns Encodes Missing Data

The fixunknowns function encodes missing values in your data so that they can be

processed in a meaningful and consistent way during network training. To reverse this
preprocessing operation and return the data to its original state, call fixunknowns again

with 'reverse' as the first argument.

removeconstantrows Handles Constant Values

removeconstantrows is a new helper function that processes matrices by removing

rows with constant values.

mapminmax, mapstd, and processpca Are New

The mapminmax, mapstd, and processpca functions are new and perform data

preprocessing and postprocessing operations.

Compatibility Considerations

Several functions are now obsolete, as described in the following table. Use the new

functions instead.

New Function

Obsolete Functions

mapminmax

premnmx
postmnmx
tramnmx

mapstd

prestd
poststd
trastd

processpca

prepca
trapca

Each new function is more efficient than its obsolete predecessors because it
accomplishes both preprocessing and postprocessing of the data. For example, previously
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https://www.mathworks.com/help/releases/R2012a/toolbox/nnet/ref/processpca.html
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you used premnmx to process a matrix, and then postmnmx to return the data to its
original state. In this release, you accomplish both operations using mapminmax; to
return the data to its original state, you call mapminmax again with 'reverse' as the
first argument:

mapminmax('reverse',Y,PS)

Derivative Functions Are Obsolete

The following derivative functions are now obsolete:

ddotprod
dhardlim
dhardlms
dlogsig
dmae
dmse
dmsereg
dnetprod
dnetsum
dposlin
dpurelin
dradbas
dsatlin
dsatlins
dsse
dtansig
dtribas

Each derivative function is named by prefixing a d to the corresponding function name.
For example, sse calculates the network performance function and dsse calculated the
derivative of the network performance function.

Compatibility Considerations

To calculate a derivative in this version, you must pass a derivative argument to the
function. For example, to calculate the derivative of a hyperbolic tangent sigmoid transfer
function A with respect to N, use this syntax:

A = tansig(N,FP)
dA dN = tansig('dn',N,A,FP)


https://www.mathworks.com/help/releases/R2012a/toolbox/nnet/ref/mapminmax.html
https://www.mathworks.com/help/releases/R2012a/toolbox/nnet/ref/sse.html

Here, the argument 'dn' requests the derivative to be calculated.
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